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Outline

• Biology/epidemiology of Guinea worm 
disease

• Mathematical model
• Impulsive differential equations
• Thresholds for theoretical control of the 

disease
• Evaluation of practical control methods
• Implications.
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Background

• Guinea worm disease is 
one of humanity’s oldest 
scourges

• It is mentioned in the bible 
and afflicted Egyptian 
mummies

• Europeans first saw the 
disease on the Guinea 
coast of West Africa in the 
17th century.
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Infection

• It is a parasite that lives in the drinking water
• Carried by water fleas which are ingested by 

humans
• Stomach acid dissolves the flea, leaving the 

parasite free to penetrate 
the body cavity

• The parasite travels to 
the extremities, usually 
the foot

• It resides here for about 
a year.
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Transmission

• When ready to burst, 
the worm causes a 
burning and itching 
sensation

• The host places the 
infected limb in water

• At this point, the 
worm ejects 
hundreds of 
thousands of larvae, 
restarting the cycle.
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The worm

• The worm can grow up to a metre in length
• Can be removed by physically pulling the 

worm out, wrapped around a stick
• Only 1-2cm can be removed per day
• This takes up to two months.
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• The medical symbol of 
the Staff of Asclepius is 
based upon the stick used 
to extract guinea worms in 
ancient times

• The disease doesn’t kill, but is 
extremely disabling, especially 
during the agricultural season

• There is no vaccine or curative drug
• Individuals do not develop immunity.

Burden of infection
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Geography

• During the 19th and 20th centuries, the 
disease was found in
– southern Asia
– the middle east
– North, East and West 

Africa
• In the 1950s, there were an 

estimated 50 million cases...
• ...however, today it is almost 

eradicated.
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Eradication program

• However, since 1986, concerted eradication 
programs have been underway

• Largely due to efforts of former president 
Jimmy Carter

• Organisations:
– The Carter Center
– National Guinea worm 

eradication programs
– Centers for Disease Control
– UNICEF
– World Health Organization.
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On the brink of eradication
• 1989: 892,000 cases, widespread countries
• 1996: 96,000 cases, 13 countries 

(none in Asia)
• 2013: <150 cases, 4 countries

– South Sudan
– Ethiopia
– Mali
– Chad

• If eradicated, it will be the first parasitic 
disease and also the first to be eradicated 
using behaviour changes alone.



Significant decline
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Prevention

• Drinking water from underground sources
• Infected individuals can be educated about 

not submerging wounds in drinking water
• Cloth filters that fit over pots and pans can 

be distributed to villages
• Nomadic people have received personal-use 

cloths fitted over pipes, worn around the 
neck

• Chemical larvacides can be added to 
stagnant water supplies.
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Continuous treatment

• However, continuous water 
treatment is neither 
desirable nor feasible

• There are environmental 
and toxicity issues

• Also limited supplies of 
resources

• Thus, we consider 
chlorination at discrete 
times.
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Impulsive Differential Equations

• Assume chlorination is instantaneous
• That is, the time required for the larvicide to be 

applied and reach its maximum is assumed to 
be negligible

• Impulsive differential equations are a useful 
formulation for systems that undergo rapid 
changes in their state

• The approximation is reasonable when the time 
between impulses is large compared to the 
duration of the rapid change.



Putting it together

• The model thus consists of a system of 
ODEs (humans) together with an ODE and a 
difference equation (parasite).
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Equations
• The mathematical model is

• tk is the chlorination time
• Chlorination may occur at 

regular intervals or not.

S� = ⇥� ⇥SW � µS + ⌅I t ⇥= tk

E� = ⇥SW � �E � µE t ⇥= tk
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The system without impulses

• Two equilibria: disease free and endemic

• The former always exists
• The latter only exists for some parameters.

�
�
µ

, 0, 0, 0
⇥

and (Ŝ, Ê, Î, Ŵ )

S=susceptibles Π=birth rate 
µ=background death rate 
E=exposed I=infectious 
W=parasite-infested water
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The basic reproductive ratio

• We can prove the following:
– When R0<1, the disease-free equilibrium is the 

only equilibrium and is stable
– When R0>1, the disease-free equilibrium is 

unstable; the endemic equilibrium exists and is 
stable

• Thus, R0 is our eradication threshold.

R0 =
��⇤⇥

µ(� + µ)(⌅ + µ)µW

Π=birth rate  β=transmissability  µ=background 
death rate  κ=recovery rate  α=incubation period    
γ=parasite birth rate  µW=parasite death rate 
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Effect of interventions

• Education discourages 
infected individuals from 
putting infected limbs in 
the drinking water

• This decreases γ and hence R0

• Filtration decreases β and hence R0

• (Continuous) chlorination increases µW and 
hence decreases R0.

R0 =
��⇤⇥

µ(� + µ)(⌅ + µ)µW

Π=birth rate  β=transmissability  µ=background death rate  
κ=recovery rate  α=incubation period    γ=parasite birth 
rate  µW=parasite death rate R0=basic reproductive ratio
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Impulsive Differential Equations

• Assume drug effects

• That is, the time-to-
peak is assumed to 
be negligible

• This results in a 
system of impulsive 
differential equations.

are instantaneous

The system with impulses

W � =
��⇥

µ(⇤ + µ)
� µW W t ⇥= tk

Π=birth rate   µ=background death rate  
κ=recovery rate  α=incubation period    
γ=parasite birth rate  µW=parasite 
death rate  tk=chlorination time  
W=parasite-infected water

W (t�k+1) = W (t+k )e�µW (tk+1�tk) +
��⇥

µµW (⇤ + µ)

�
1� e�µW (tk+1�tk)

⇥
.
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• Solving the recurrence relation for the 
endpoints of the impulsive system yields an 
explicit solution:

W�
n =

��⇥

µµW (⇤ + µ)

�
(1� r)n�1e�µW (tn�t1) + (1� r)n�1e�µW (tn�t2)

+ · · · + (1� r)e�µW (tn�tn�1) + 1

� (1� r)n�2e�µW (tn�t1) � (1� r)n�3e�µW (tn�t2)

� · · ·� e�µW (tn�tn�1)

⇥
.
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κ=recovery rate  α=incubation period    
γ=parasite birth rate  µW=parasite death rate  
W=parasite-infected water  tk=chlorination 
time  r=chlorination effectiveness
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Fixed chlorination

• If chlorination occurs at fixed intervals, then 
tn-tn-1=τ is constant

• Thus, the endpoints approach

• To keep this below a desired threshold W*, 
we require

lim
n⇥⇤

W�
n =

��⇥

µµW (⇤ + µ)

�
1� e�µW ⇥

1� (1� r)e�µW ⇥

⇥

⇧ <
1

µW
ln

�
��⇥ � (1� r)W �µµW (⇤ + µ)

��⇥ �W �µµW (⇤ + µ)

⇥
.
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Non-fixed chlorination

• Regular chlorination may be difficult due to 
limited resources and infrastructure

• In particular, if chlorination is not fixed, the 
entire history of chlorination would need to 
be known

• This is highly unlikely.
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Limited knowledge

• Assume that only the two previous 
chlorination events are known

• Specifically,

• To keep the parasite below the threshold W*, 
we thus require

e�µW (tn�tk) � 0 for k > 2

tn <
1

µW
ln

�
2� r2

1� r(1� r)eµW tn�2 � (2� r)eµW tn�1 �W �µµW (⇤ + µ)/(��⇥)

⇥
.

Π=birth rate   µ=background death rate  κ=recovery rate  α=incubation 
period    γ=parasite birth rate  µW=parasite death rate  tk=chlorination 
time  W=parasite-infected water  r=chlorination effectiveness
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Comparison

• When r=1, fixed and non-fixed chlorination 
are equivalent

• There exists r0 such that non-fixed 
chlorination will only be successful for r0<r≤1

• Conversely, fixed chlorination is successful 
for all values of r

• Thus, chlorination, whether fixed or non-
fixed, can theoretically control the disease
(but not eradicate it).

r=chlorination effectiveness
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Latin Hypercube Sampling

• We explored the sensitivity of R0 to 
parameter variations using 
– Latin Hypercube Sampling 
– Partial Rank Correlation Coefficients

• Latin Hypercube Sampling
– samples parameters from a random grid
– resamples, but not from the same row or 

column 
(a bit like tic tac toe)

– runs 1,000 simulations.
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Partial Rank Correlation Coefficients

• Partial Rank Correlation Coefficients 
(PRCCs)
– test individual parameters while holding all other 

parameters at median values
– rank parameters by the amount of effect on the 

outcome
• PRCCs > 0 will increase R0 when they are 

increased
• PRCCs < 0 will decrease R0 when they are 

increased.
R0=basic reproductive ratio
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Most important parameters

• The three parameters with the most impact 
on R0 are
– the parasite death rate
– transmissability
– the parasite birth rate

• These are also the three that we have the 
most control over, via
– chlorination
– filtration
– education.

R0=basic reproductive ratio
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Variation of control parameters

• The same three parameters have the 
greatest impact 
(as expected)

• However, increasing µW (eg via continuous 
chlorination) is unlikely to 
lead to eradication

• Conversely, sufficiently 
decreasing γ (via education)
is likely to bring R0 below 1.

γ=parasite birth rate  µW=parasite 
death rate  R0=basic reproductive ratio
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Eradication threshold

• For R0=1, we can plot the 
threshold surface for our 
three control parameters
(representing education, 
filtration and chlorination)

• We fixed all other 
parameters at median 
values.

R0=basic reproductive ratio
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Effect of control parameters

• The outcome is significantly dependent on 
changes in γ

• Even if µW were increased tenfold, it is still 
unlikely to lead to eradication

• β would have to be reduced to extremely low 
levels.

β=transmissability  
γ=parasite birth rate 
µW=parasite death rate
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Reducing the parasite birthrate by 99%
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Long-term dynamics

• Annual chlorination alone has little effect on 
the disease

• The population quickly returns to high levels 
following chlorination

• Reducing the parasite birth rate by 99% (eg 
via education) can lead to eradication

• The entire population becomes uninfected.
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Eradication criteria

• There are three criteria for eradication:
– biological and technical feasibility
– costs and benefits
– societal and political considerations

• Guinea worm disease satisfies all three.
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Comparison with smallpox

• The only human disease to be eradicated 
(thanks to a successful vaccine)

• A critical control tool was photographic 
recognition cards

• Non-biomedical interventions were 
as important as biomedical ones

• Barriers included
– cultural traditions
– religious beliefs
– lack of societal support.
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Other attempts at eradication
• In the 20th century, four diseases were 

targeted:
– malaria 
– yellow fever
– yaws (a tropical infection of the skin, bones and 

joints)
– smallpox

• Only one of these was successful
• In 2011, we eradicated rinderpest (a cow 

disease, from which quarantine was invented)
• This brought our total up to two.
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Why they failed

• Malaria failed due to lack of follow-through
– especially due to “Silent Spring”

• Yellow fever failed when animal reservoirs 
were discovered

• Yaws was reduced by 95%, but in the 
1960s, the campaign shifted from targeted 
eradication to surveillance and control

• The strategy failed
• However, ongoing efforts mean India was 

recently declared yaws-free.
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Summary

• We can derive optimal times for chlorination, 
whether fixed or non-fixed, to keep the parasite 
at low levels...
...but chlorination is unlikely to lead to eradication

• Education — persuading people not to put 
infected limbs in the drinking water — is the best 
way to eradicate Guinea worm disease

• Of course, a combination of education, 
chlorination and filtration is most desirable

• Efforts should be focussed on reaching remote 
communities.
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Conclusion

• We stand at the brink of eradicating one of 
humanity’s ancient scourges

• Without a vaccine or drugs, behaviour 
changes alone will likely lead to eradication 
of the first parasitic disease

• This may reshape our understanding of what 
it takes to eradicate a disease

• By mustering both scientific and cultural 
resources, we can successfully defeat one 
of the oldest diseases in human history.
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