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Introduction

It is an important public health issue in the US, where it is the most common
vector-borne disease

Areas of predict¢d
Lyme disease
transmission

Borrelia burgdorferi

‘ Black-legged tick (/Ixodes scapularis)
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It's transmitted to humans
trough ticks’ bites
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7} TickEncounter Resource Center Ixodes pacifcus (Western-Blacklegged Tick)
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Sceloporus occidentalis




Hosts

Dusky-footed Woodrat Deer Mouse
(Neotoma fuscipes) (Peromyscus maniculatus)

California Kangaroo Rat Western Grey Squirrel
(Dipodomys californicus) (Sciurus gr ’SeU)
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Host competence: ability to sustain the tick population.




Host competence: ability to sustain the tick population.

Reservoir competence: ability of an infected host to infect a tick.
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Objectives

To assess the impacts of experimentally reduced western fence lizard density on
abundance and infection prevalence of Ixodes pacificus and on tick distributions
on the remaining hosts

Other hosts

Sceloporus occidentalis Ixodes pacificus

v’Abundance
v'Infection prevalence
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Hypothesis

The presence of lizards may act as a barrier for the transmission of lyme
disease, due to it high host competence and lower reservoir competence

Predictions

1) If ticks switch to other hosts when lizards are scarce, and feed with equal
success, then tick abundance might not decline and infection prevalence

would increase.

2) Alternatively, reduced lizard abundance might lower tick abundance if ticks
generally fail to find alternative, high-quality hosts

| If there is a strong preference for lizards — no switch to an alternate host |

xK K K K K




Methods

MarinCounty,CA, north of San Francisco

Gulf of the
Farallones
Marine Qanstiary

Sebastopol
Rohnert (29)
Park
Sonoma Napa
Petaluma 18 @
~—— Qz1) ,__ ,.I
—r(
* (37) =
Marconi Conference Novat - Vall
5 ovato
Center State allejo
Historic Park lgnacio

San Al
i ameda
FW&%%%&ZOM Google

Y,
Y,

14 long-term 1 ha plots




Methods

MarinCounty,CA, north of San Francisco

Sebastopol
Rohnert (29)
Park
Sonoma Napa
Petaluma (18 @
~n ® L.
N ®
= (3T) Aty
Marconi Conference f
Center State Nolvato. Vallejo
Historic Park gnacio)
|
Pinole
Richmond
Cityn,  Berkeley 14 |Ong-te|" 1 ha plots
3 San
Gulf of the
lones i Alameda
. sioncaly FIRB 5582014 Google

>
)

6 experimental removal plots 8 control plots




Results

The effect of lizard removals on the density and infection prevalence of questing
ticks was evaluated:

v' Sampling larval ticks in the year of removals (time t)
v" Nymphal ticks the year after the experimental manipulation




Results

The effect of lizard removals on the density and infection prevalence of questing
ticks was evaluated:

v' Sampling larval ticks in the year of removals (time t)
v" Nymphal ticks the year after the experimental manipulation

Time t:

A Larvaeticks —> were not able to immediately find an alternate blood
meal host




Results

The effect of lizard removals on the density and infection prevalence of questing
ticks was evaluated:

v Sampling larval ticks in the year of removals (time t)
v" Nymphal ticks the year after the experimental manipulation

Time t:

A Larvaeticks —> were not able to immediately find an alternate blood
meal host

A Larval burdens — > lizard removal elevated larval tick burden on female
on female N. fuscipes woodrats

A KKK
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Results

The year following lizard removal:

Vv Nymphal ticks

v'5.19% of larval I. pacificus did switch to a competent reservoir host (N. fuscipes)

v'The increased larval burden on N. fuscipes was not enough to absorb 94.81% of
larvae that would have fed on lizards

Results indicate that an incompetent reservoir for a pathogen
may, in fact, increase disease risk through the maintenance of
higher vector density and therefore,
higher density of infected vectors
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Questions

Can a mathematical model for Lyme disease transmission help understand the experimental result described above?
What else such a model can predict about:

= infection risk to humans?
= host assemblages and Lyme disease prevalence in humans and reservoirs?
= management of reservoir populations to decrease the risk of infection?
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Where

e =: "Number of eggs that hatch”

Va4 =: ”Reservoir competence on animals”

H 4 =: "Host competence of animals”

R =: ”Number of lizards”

Hp =: "Host competence of lizards ”

Hyg =: "Host competence of humans”

1 =: ”Feeding success rate of larva”

o =: ”Feeding success rate of nymphs”

~v =: ”Larval death rate”

v4 =: ” Animal death rate”

vg =: ”Humans death rate”

pa =: "New animals that born to mantain the equilibrium of the system”
e =: ”Efficiency of the bites on humans”

€4 =: ”Efficiency of the bites on animals”

0 =: "Human infection recovery rate”

A =: ”Encounter rate of infected nymph and human”

© =: "Death rate due to the disease”



