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A	short	biography:	André	de	Roos
http://staff.fnwi.uva.nl/a.m.deroos

§ Ecologist	with	a	strong	interest	understanding	how
ecological	systems	function (dynamics)	and
(some)	mathematical	skills

§ PhD	in	Theoretical	Biology	at	Leiden	University	(1989)
Supervisors:	Hans	Metz	and	Odo Diekmann
Topic:		Numerical	methods	of	physiologically	structured
population	models	(Escalator	Boxcar	Train)
an	EBT	implementation	with	adaptive	spacing	of	cohort	introduction	times	....	offers	
the	best	 overall	performance	for	SSPMs Zhang,	Dieckmann,	Brännström,	2017

§ Nowadays:	using	state-of-the-art	(numerical)	toolbox	(dynamics,	bifurcation	
analysis,	adaptive	dynamics)	for	studying	dynamics	of	structured	population	
models	(PSPMs)	to	answer	ecological	and	evolutionary	questions

§ In	case	of	PSPMs	biology	has	driven	the	mathematical	progress
� Do	not	blindly	apply	existing	methods	from	mathematics or

physics, think	carefully	about	your	biological	system	first



Overview	of	lectures

Population and Community Ecology
of Ontogenetic Development
André M. de Roos & Lennart Persson
Princeton Monographs 51 Lennart	PerssonAndré	de	Roos

• Lecture	1: Conceptual,	(somewhat)	
mathematical,	the	basic	idea

• Lecture	2: Counterintuitive implications	for
ecological	community	structure

• Lecture	3: General	formulation	of	a	PSPM,
numerical	tools	and	techniques

• Lecture	4: Implications	for	ecological	dynamics



Ecology	is	all	about	interactions



Modeling	ecological	dynamics



Modeling	ecological	dynamics
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Dynamics	of	interacting	populations

“Population	dynamics:	the	variations	in	time	and	space	in	the	
sizes	and	densities	of	populations	(the	numbers	of	individuals	
per	unit	area)”

M.Begon,	C.R.Townsend,	J.L.Harper	(2005)	
Ecology:	From	Individuals	to	Populations,	Wiley-Blackwell

Is	there	a	problem?

Populations	considered	as	collections	of	elementary	particles,
only	increasing	and	decreasing	in	abundance	through

reproduction	and	mortality,	respectively



8
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>>:

dR

dt
= p(R) � f(R)C

dC

dt
= ✏f(R)C � µC

A	“general”	predator-prey	model

Two	fundamental	predictions:

§ Equilibrium	consumer	density	decreases	with	increasing	
consumer	mortality

§ Limit	cycles	occur	under	a	wide	range	of	conditions	if
(e.g.	exponential	or	logistic	prey	growth)	

Considered	to	be	“general”	because	it	“captures	the	bare	
essence	of	the	predator-prey	interaction”

p0(R) � 0

f 0(R) > 0



Food	chains:	trophic	cascades

Longer	food	chains	due	to:

§ Increased	resource	productivity

§ Decreased	exploitation	of	top	predator



Predator-prey	dynamics:	cycles	abound....



30%	of	700	populations	cycle
(mainly	fish	and	mammals)

...	or	perhaps	not?

Kendall et	al.	Ecol.	Letters 1:	160-164	(1998)	



Classic	predator-prey	cycles	are	not	common

Murdoch	et	al.	(2002)	Nature 417:	541-543

Distribution	of	cycles	among	classes	defined	by	
scaled	period.

• SGC,	single-generation	cycles	(! =	1)
• DFC,	delayed-feedback	cycles	(2	≤	! ≤	4)
• CRC,	consumer–resources	cycles	(period	in	years	

4	TC +	2	TR )
No	cycles	fall	in	the	intermediate	class	(INT)	between	
single-species	and	consumer–resource	cycles

The	majority	of	observed	population	
cycles	are	not predator-prey	cycle



A	“general”	predator-prey	model

These	unstructured,	Lotka-Volterra-type	models	underlie	
our	thinking	and	theory	about	ecological	systems

But	these	models	completely	ignores	the	bare	essence	of	life:
§ Individuals	have	to	develop	and	growth	in	size	before	they	can	contribute	
to	further	population	growth
(juvenile-adult	stage	structure,	juvenile	delay)

§ Mere	existing	costs	energy
(maintenance	costs)

8
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>>:

dR

dt
= p(R) � f(R)C

dC

dt
= ✏f(R)C � µC

f 0(R) > 0



Today’s	special

How	juvenile-adult	stage-structure and	maintenance	
requirements	overturn	fundamental	ecological	
insights	derived	from	unstructured	models



p0(R)  0 and f 0(R), g0(R) > 0

8
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>>:

dR

dt
= p(R) � f(R)C

dC

dt
= g(R)C � µC

The	archetypical	consumer-resource	model

Two	fundamental	predictions:

§ Equilibrium	consumer	density	decreases	with	increasing	mortality

§ Equilibrium	is	always	stable	(no	limit	cycles)



Simple	stage-structure

8
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>>>>>>:

dR

dt
= p(R) � fJ(R)CJ � fA(R)CA

dCJ

dt
= gA(R)CA � gJ(R)CJ � µJCJ

dCA

dt
= gJ(R)CJ � µACA

p0(R)  0 and f 0
J(R), f 0

A(R), g0J(R), g0A(R) > 0



When	structure	does	not	matter	at	all

fJ(R) = ↵Jf(R), fA(R) = ↵Af(R)

gJ(R) = �g(R), gA(R) = �g(R)

µJ = µA = µ

dC

dt
= gA(R)CA � µJCJ � µACA

= gA(R)(1� z)C � µJzC � µA(1� z)C

Define C = CJ + CA and z = CJ/(CJ + CA)



When	structure	does	not	matter	at	all

dC

dt
= gA(R)CA � µJCJ � µACA

= gA(R)(1� z)C � µJzC � µA(1� z)C

Define C = CJ + CA and z = CJ/(CJ + CA)

dz

dt
=

1

CJ + CA

dCJ

dt
� CJ

CJ + CA

1

CJ + CA

d(CJ + CA)

dt

= gA(R)(1� z) � gJ(R)z � µJz

� z (gA(R)(1� z) � µJz � µA(1� z))

= gA(R)(1� z)2 � gJ(R)z � (µJ � µA) z(1� z)



When	structure	does	not	matter	at	all
8
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>>>>>>:

dR

dt
= p(R) � (↵Jz + ↵A(1� z)) f(R)C

dC

dt
= �g(R)(1� z)C � µC

dz

dt
=

�
�(1� z)2 � �z

�
g(R)

�(1� z̄)2 � �z̄ = 0 ) z̄ =

0
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For t ! 1 z will always approach its equilibrium value z̄:



When	structure	does	not	matter	at	all

Necessary	assumptions:

§ Ingestion	and	production	(maturation,	reproduction)	have	the	same	
dependence	on	resource	density	(but	not stage-independent)

§ Mortality	rate	is	the	same	for	both	stages

8
>><

>>:

dR

dt
= p(R) � ↵̄f(R)C

dC

dt
= �̄g(R)C � µC

in which ↵̄ = ↵J z̄ + ↵A (1� z̄) and �̄ = � (1� z̄).

Generalizable	to	arbitrarily	many	stages!



p0(R)  0 and f 0
J(R), f 0

A(R) > 0 (but not fJ(R) / fA(R))

The	effects	of	stage-structure	alone
§ Common	assumption:	numerical	response	is	proportional	to	
functional	response:

8
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>>>>>>:

dR

dt
= p(R) � fJ(R)CJ � fA(R)CA

dCJ

dt
= � fA(R)CA � � fJ(R)CJ � µJCJ

dCA

dt
= � fJ(R)CJ � µACA



Unique	equilibrium	state

8
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>>>>:

H1(R̄, ¯̄CJ , C̄A) = p(R̄) � fJ(R̄)C̄J � fA(R̄)C̄A = 0

H2(R̄, C̄J , C̄A) = �fA(R̄)C̄A � �fJ(R̄)C̄J � µJ C̄J = 0

H3(R̄, C̄J , C̄A) = �fJ(R̄)C̄J � µAC̄A = 0

)

8
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>>>>>>>:

�fJ(R̄)
�
�fA(R̄) � µA

�
� µJµA = 0

C̄J =
p(R̄)

fJ(R̄)
�
1 + �fA(R̄)/µA

�

C̄A =
�p(R̄)

µA + �fA(R̄)



The	effects	of	stage-structure	alone

J =

0

BBB@

p0(R̄)� f 0
J(R̄)C̄J � f 0

A(R̄)C̄A �fJ(R̄) � fA(R̄)

�f 0
A(R̄)C̄A � �f 0

J(R̄)C̄J ��fJ(R̄)� µJ �fA(R̄)

�f 0
J(R̄)C̄J �fJ(R̄) �µA

1

CCCA

In	a	3-dimensional	ODE	system	a	unique,	positive	equilibrium	state	ensures	
that	D = det J < 0

D = �
�
�fA(R̄) + µA

� �
µJf

0
J(R̄)C̄J + �fJ(R̄)f 0

A(R̄)C̄A)
�



The	effects	of	stage-structure	alone
§ Changes	in	equilibrium	density	can	be	assessed	using	the	implicit	function	

theorem:
0
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The	effects	of	stage-structure	alone

dC̄J

dµJ
= D�1

���������

p0(R̄)� f 0
J(R̄)C̄J � f 0

A(R̄)C̄A 0 � fA(R̄)

�f 0
A(R̄)C̄A � �f 0

J(R̄)C̄J C̄J �fA(R̄)

�f 0
J(R̄)C̄J 0 �µA

���������

= D�1
�
µA

�
�p0(R̄) + f 0

J(R̄)C̄J + f 0
A(R̄)C̄A

�
+ �f 0

J(R̄)fA(R̄)C̄J

�
C̄J

) dC̄J

dµJ
< 0

d ¯CA

dµJ
,

d ¯CJ

dµA
and

d ¯CA

dµA
are also negative.



Characteristic	equation

Analysis	is	complex,	but	checking	the	Routh-Hurwitz	criteria	reveals	that	the	
equilibrium	is	always	stable

���������

p0(R̄)� f 0
J(R̄)C̄J � f 0

A(R̄)C̄A � � �fJ(R̄) � fA(R̄)

�f 0
A(R̄)C̄A � �f 0

J(R̄)C̄J ��fJ(R̄)� µJ � � �fA(R̄)

�f 0
J(R̄)C̄J �fJ(R̄) �µA � �

���������

= 0

Stage	structure	alone	does	not	invalidate	the	fundamental	
predictions	from	unstructured	consumer	resource	cycles,
if	the	numerical	and	functional	response	are	proportional



Fecundity
(Net-production
DEB		models)

Maintenance

Maintenance	takes	precedence	over	production

Functional
response

Resource

Numerical
response



Maintenance:	implicit	without	stage	structure

8
>><

>>:

dR

dt
= p(R) � f(R)C

dC

dt
= (�f(R)� T )+ C � µC

In the close neighbourhood of an equilibrium state, necessarily:

(�f(R)� T )+ = �f(R)� T

8
>><

>>:

dR

dt
= p(R) � f(R)C

dC

dt
= �f(R)C � (µ+ T )C
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>>>>>>:

dR

dt
= P � f(R) (CJ + CA)

dCJ

dt
= (✏f(R)� TA)

+ CA � (✏f(R)� TJ)
+ CJ � µCJ

dCA

dt
= (✏f(R)� TJ)

+ CJ � µCA

Maintenance	and	stage	structure	together

§ In	equilibrium	either	juvenile	or	adult	consumer	density	can	
increase	with	increasing	mortality	(stage-independent,	
juvenile,	adult)

§ Population	cycles	can	occur	as	a	consequence	of	stage-
structured	dynamics



P = ✏ = TA = 1, TJ = 0.75 P = ✏ = TA = 1, TJ = 1.5

Maintenance	and	stage	structure	together
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Maintenance	and	stage	structure	together
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Maintenance	and	stage	structure	together

Assimilation	increase	≈	9% Maturation	increase			 ≈	18%
Reproduction	increase	≈	95%

Net	increase	in	reproduction	>>	Net	increase	in	maturation
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Maintenance	and	stage	structure	together
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Maintenance	and	stage	structure	together

§ In	equilibrium	either	juvenile	or	adult	consumer	density	can	
increase	with	increasing	mortality	(stage-independent,	
juvenile,	adult)

§ Population	cycles	can	occur	as	a	consequence	of	stage-
structured	dynamics

8
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>>>>>>:

dR

dt
= P � f(R) (CJ + CA)

dCJ

dt
= (�f(R)� T )+ CA � (�f(R)� T )+ CJ � µCJ

dCA

dt
= (�f(R)� T )+ CJ � µCA



Maintenance	and	stage	structure	together
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Maintenance	and	stage	structure	together
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Maintenance	and	stage	structure	together

Resource density
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Assimilation	increase	≈	15%
Maturation	increase			≈	35%

Assimilation	increase	 ≈	15%
Reproduction	increase	≈	90%

Net	increase	in	reproduction	>>	Net	increase	in	maturation



Maintenance	and	stage	structure	together
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Flies

Jellyfish

Butterflies

Frogs

Development	predominates!

Individual	life	cycles	are	complex



Flies

Jellyfish

Butterflies

Frogs

Development	predominates!

Individual	life	cycles	are	complex



Life	history’s	most	prominent	feature:
Growth	in	body	size	(a	doubling	at	least	)

1	mm

x	109

Intra-specific	variation	in	body	size!



Life	history’s	most	prominent	feature:
Growth	in	body	size	(a	doubling	at	least	)

1	mm

x	109

Intra-specific	variation	in	body	size!
All	3	perch	are	4	years	old!

Foto by	Emma	van	der	Woude



Life	history’s	most	prominent	feature:
Growth	in	body	size	(a	doubling	at	least	)

1	mm

x	109

Intra-specific	variation	in	body	size!
All	3	perch	are	4	years	old!

Foto by	Emma	van	der	Woude



Food-dependent	growth	is	ubiquitous
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 Insects
 Crustaceans
 Fish
 Amphibians
 Reptiles
 Birds
 Mammals

~	1.3	million	animal	species grow	substantially	after	birth

Source:	IUCN	List	of	Threatened	Species	2014	 De	Roos	&	Persson,	MPB	51,	2013



The	simplest,	fully	size-structured	analogue

§ Juveniles	grow	in	body	size,	adults	only	reproduce

§ Ingestion,	maintenance,	somatic	growth	and	
reproduction	proportional	to	body	size

§ Mortality	constant	within	each	stage

§ Bio-energetics	model:	mass	conservation

Juveniles	and	adults	may	differ	in:
• Mass-specific	growth	and	reproduction

(net-production	rate	of	new	biomass)
• Mortality: µJ , µA

ν J (R), νA (R)



The	size-structured	population	model
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The	size-structured	population	model

Mass	conservation:
Juvenile	growth	and	adult	reproduction proportional	to	body	size:

g(s,R) = ⌫J(R)s = (�!J(R) � T ) s

b(sm, R) =
⌫A(R)sm

sb
=

(�!A(R) � T ) sm
sb

@c(t, s)

@t
+ ⌫

J

(R)

@(sc(t, s))

@s
= �µ

J

c(t, s) for s
b

 s < s
m

⌫
J

(R)s
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b
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⌫
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C
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(t)
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J
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m
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Equilibrium	changes	with	increasing	mortality
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Asymmetric	changes	in	reproduction	and	
maturation	with	increasing	mortality
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When	adults	compete	more:

§ Low	adult	fecundity,	high	juvenile	
survival

§ Adults	dominate

§ Adults	use	most	of	their	intake	
for	maintenance (no	production)

§ Mortality	releases	adult	
competition,	increases	
reproduction	and	juvenile	
biomassBiomass	maturation	rate

Biomass	reproduction	rate

Mortality	rate



Interplay	between	maintenance	and	mortality

Resource

Functional	response

Fecundity

Maintenance

20%	decrease in	density	increases	ingestion
by	roughly	20%,	but	doubles adult	fecundity
� 60%	increase	in	total	reproduction

Mortality	decreases	maintenance	losses	and	
increases	production	efficiency

Rate



Equilibrium	changes	with	increasing	mortality
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⌫J(R̃) > ⌫A(R̃) > 0Reproduction	control:



Ontogenetic	asymmetry
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⌫J(R̃) > ⌫A(R̃) > 0 ⌫A(R̃) > ⌫J(R̃) > 0


