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A	central	issue	in	ecology	and	evolution

Life	history
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The	conceptual	issue:
Development	like	other	complicating	factors?

Unlike modulating factors such as:

§ Spatial heterogeneity
• Influence	excluded	through	homogeneous	mixing
(chemostats)

§ Intraspecific genetic variation

• Influence	excluded	by	using	clonal	or	inbred	individuals	
(parthenogenetic	species,	iso-female	lines)

NO! Like reproduction and mortality, development is a
constituent component of population dynamics

Development is next to mortality the most certain population dynamics 
process, reproduction is only secondary
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§ Matrix	models:	discrete	time,	discrete	individual	states	(i-states)

§ Integral	projection	models: discrete	time,	continuous	i-states

§ Characteristics:
• Data-driven,	tight	link	with	life	history	observations
• Non-mechanistic,	no	functional	individual	life	history	description
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A	data-driven	approach:	IPMs

implementing the ipm

The next step is to write down the kernel and check

whether its formulation matches our knowledge of the life

cycle and the data collection protocols,

Kðz0; zÞ ¼ sðzÞGðz0; zÞ þ sðzÞpbðzÞprC0ðz0; zÞ=2: eqn 12

In this instance, both the survival and reproduction

kernel components contain the s(z) term, because the

main period of mortality occurs prior to reproduction.

The survival component includes the growth kernel G(z′,
z); as in the example below, G is often specified in terms

of the conditional mean, variance and distribution fam-

ily of subsequent size. The reproduction component is

simply the product of the reproduction function, pb(z),

the probability of survival from spring until summer,

pr, and the conditional offspring size function, C0(z′,z).
The factor of 1/2 appears because we are tracking the

dynamics of females and have assumed an equal sex

ratio.

We are going to use the approach given in Box 1, so

we need to specify the P(z′,z) and F(z′,z) functions:
## Define the survival-growth kernel

P z1z <- function (z1, z, m.par) {

return(s z(z, m.par) * G_z1z(z1, z, m.par))

}

## Define the reproduction kernel

F z1z <- function (z1, z, m.par) {

return( s z(z, m.par) * pb_z(z, m.par) * (1/2) *

pr_z(m.par) * C_0z1(z1, z, m.par) )

}

These are just R translations of the two kernel compo-

nents, and each function is passed a numeric vector,

m.par, that holds the parameter values for the underlying

demographic regressions. In order to complete the imple-

mentation of our model, we next need to define the vari-

ous functions called within P_z1z and F_z1z. These

follow in a very intuitive way from the statistical models

we fitted to data. For example, the function describing

the probability of survival is:

s z <- function(z, m.par) {

linear.p <- m.par["surv.int"] + m.par["surv.z"] * z

# linear predictor

p <- 1/(1+exp(-linear.p))

# inv-logistic trans

return(p)

}

pb z <- function(z, m.par) {

linear.p <- m.par["repr.int"] + m.par["repr.z"] * z

p <- 1/(1+exp(-linear.p))

return(p)

}

These functions extract the appropriate parameters,

calculate the linear predictor at each value of z and then

transform this onto the probability scale. For s_z and
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Fig. 2. The main mass-dependent demo-
graphic processes in the Soay sheep life
cycle, as a function of current size, z in year
t. (a) The probability of survival, (b) female
mass in the next summer census (August
catch), (c) the probability of reproduc-
tion and (d) offspring mass. Source file:
Ungulate Calculations.R in Sup-
porting Information.

© 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Journal of
Animal Ecology, 83, 528–545
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Demographic	models:
Matrix	or	integral	projection	models

• Population	rather	than	community	dynamics	(population	growth	rate)
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Individual	life	history
Reproduction,	
Development,		
Mortality

• Fixed	development	rates	(age,	stage),	independent	of	food

Structured	population	models

Population	
dynamics

Abundance,
Size	structure



Life	history’s	most	prominent	feature:
Growth	in	body	size	(a	doubling	at	least	)

1	mm

x	109

Intra-specific	variation	in	body	size!
All	3	perch	are	4	years	old!

Foto by	Emma	van	der	Woude



• Community	dynamics	(resources,	consumers,	predators)
• Food-dependent	growth	in	body	size
• Strict	conservation	of	mass/energy	including	maintenance	costs

Size-structured	population	models
based	on	individual	energy	budgets

Community	dynamics
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dynamicsPopulation	

dynamicsPopulation	
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Nonlinearity:	population	feedback	on	life	history

Life	history
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Physiologically	Structured	Population	Models

Environmental	state

• Resource	density
• Predation	risk
• Population	density

Individual	state

• age
• size/mass
• sex	or	genotype
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Impact
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Types	of	population	feedback	on	life	history

§ Number	of	conspecifics	(direct	density-dependence)
• Interference	competition,	e.g.	for	mates	or	nesting	sites
• Phenomenological,	non-mechanistic

§ Resource	density	(indirect)
• Exploitative	foraging	on	shared	resource

§ Predation	risk	(indirect)
• Top-down	control	on	prey	population	through	shared	predator

Environment

§ Dynamic	traits	(i-state	variables)
• Age,	body	size,	energy	reserves

§ Static	traits	(i-state	variables)
• Sex,	frailty,	genotype

Individual



Physiologically	Structured	Population	Models
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Model	ingredients	and	parameterization
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Dynamic	energy	budget	models:
Energy/mass	conservation	principle

Energy	intake	(assimilation	from	food)
=	

Energy	expenditure	(maintenance,	growth,	reproduction)

Energy	intake

Somatic
maintenance

Growth

Reproduction

§ “Kappa-rule”models
(Kooijman, 1993, 2002, 2009)
Reproduction proportional
to ingestion

§ Net-production models
Maintenance covered first



Dynamic energy budget model

Food	
assimilation Metabolism Growth

Reproduction

κ

1−κ

“Kappa-rule”model or	net-assimilation	model

Net-production	model

Food	
assimilation Metabolism

Reproduction

Growth



Kooijman’s Dynamic	Energy	Budget	theory
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Estimating	DEB	parameters	from	individual	data

Feeding level 1

Feeding level 2
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@c(t, s)

@t
+

@g(s,R) c(t, s)

@s
= �µ(s,R) c(t, s)

g(sb, R) c(t, sb) =

Z sm

sb

�(s,R) c(t, s) ds

dR

dt
= G(R) �

Z sm

sb

�(s,R) c(t, s) ds

A	generic	size-structured	model

§ Individuals are born with size (mass)
§ Growth rate in body size:
§ Reproduction rate: 
§ Resource intake rate: 
§ Mortality rate:

• “Sinko &	Streifer model”
(Ecology,	1967)

• VonFoerster (1959)

• Frederickson	et	al.	(1967)

• Bell	&	Anderson	(1967)

• Metz	&	Diekmann (1986)
Springer	Lecture	Notes
in	Biomathematics	68

sb

g(s,R)

�(s,R)

�(s,R)

µ(s,R)



�b

t � a

time

size

Population	birth	rate

t

Newborns
Survivors

Contribution	to	birth	rate

x(a)

F(a) b(t � a)

�(x(a))F(a)b(t � a)

Integro-delay-differential	equation	formulation

�b



The	general	structured	model

b(t) =

Z 1

0

Fecundity
z }| {
�(⌅(a,Et), E(t)) F(a,Et)| {z }

Survival

b(t� a) da

I(t) =

Z 1
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z }| {
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E(t) =

 
X(t)

Y (t)

!

X(t) = GX (X(t), Y (t), I(t)) ,
dY

dt
= GY (X(t), Y (t), I(t))

Needed: ⌅(a,Et), the solution of

d⇠

d⌧
= g(⇠(⌧), E(t�a+⌧)), 0 < ⌧ < a, ⇠(0) 2 ⌦b



Functional	life	history	representations
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Kooijman’s Dynamic	Energy	Budget	model

How	can	we	compute	model	equilibria
given	a	mildly	complex	life	history	model?



Steady	state	analysis
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Abstract

Our systematic formulation of nonlinear population models is based on the notion of the environmental condition. The defining
property of the environmental condition is that individuals are independent of one another (and hence equations are linear) when
this condition is prescribed (in principle as an arbitrary function of time, but when focussing on steady states we shall restrict to
constant functions). The steady-state problem has two components: (i) the environmental condition should be such that the existing
populations do neither grow nor decline; (ii) a feedback consistency condition relating the environmental condition to the
community/population size and composition should hold. In this paper we develop, justify and analyse basic formalism under the
assumption that individuals can be born in only finitely many possible states and that the environmental condition is fully
characterized by finitely many numbers. The theory is illustrated by many examples. In addition to various simple toy models
introduced for explanation purposes, these include a detailed elaboration of a cannibalism model and a general treatment of how
genetic and physiological structure should be combined in a single model.
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Population dynamics; Physiological structure; Nonlinear; Feedback via the environment; Deterministic at population level; Cannibalism;
Finitely many states at birth; Population genetics; Adaptive dynamics; Competitive exclusion

1. Introduction

1.1. Aim of the paper

The aim of this paper is to provide a technical
framework for analysing the existence (as well as
dependence on parameters) of steady states for very
large classes of population models, including models for
interacting physiologically structured populations. In
particular, we show that the steady-state problem can be
brought into the form

b ¼ LðIÞb;
I ¼ GðIÞb;

(

ð1:1Þ

where

(i) b is a vector of birth rates (each component bj of b
is the steady rate at which individuals are born
with the state at birth numbered j).

(ii) I is a vector describing the environmental conditions
as far as they are influenced by interaction. The
defining property is that individuals are indepen-
dent of one another when I is given (in general as a
function of time; in this paper we restrict to
constant I).

(iii) L(I) is the next-generation matrix. The (i, j)-
element of L(I) is the expected number of offspring
with birth state i born to an individual that itself
was born with state j, given steady environmental
conditions as specified by I.

(iv) G(I) is the feedback matrix. The (i, j)-element of
G(I) gives the lifetime contribution to the ith
component Ii of I of an individual born with state
j, given steady environmental conditions as speci-
fied by I.

Following up on earlier work (Diekmann et al., 2001;
Kirkilionis et al., 2001) we include an operational
description of how to derive L(I) and G(I) from
more basic modelling ingredients, such as maturation-,
death-, and birth-rates. Moreover, we develop

!Corresponding author. Fax:+358-40-333-65-95.
E-mail address: mats.gyllenberg@utu.fi (M. Gyllenberg).

0040-5809/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0040-5809(02)00058-8
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describing physiologically structured populations. To describe such populations, we
use integral equations coupled with each other via interaction (or feedback) variables.
Additionally we allow interaction with unstructured populations, described by ordinary
differential equations. The interaction variables are chosen such that if they are given
functions of time, each of the resulting decoupled equations becomes linear. Our nu-
merical procedure to approximate an equilibrium which will use this special form of the
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of equilibria in dependence on parameters.
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Equilibrium	analysis
§ Individuals	are	assumed	to	live	in	an	environment	characterized	by	a	

(finite)	set	of	environment	variables:	

Environment	variables	can	include	independent	quantities	like	
resource	density	and	density	of	predators,	but	also	density-
dependent	measures	like	total	number	of	individuals	or	biomass	in	
the	population

§ Individuals	are	characterized	by	their	individual or	i-state,	which	is	a	
(finite)	set	of	physiological	characteristics	(traits	such	as	age,	size,	
sex,	energy	reserves):

§ Individual	and	environmental	state	variables	determine	the	
individual	life	history	(development,	impact,	reproduction,	mortality)

x = (x1, ... , xk) 2 ⌦ ⇢ Rk

E = (E1, ... ,Em) 2 Rm



§ Development	follows	a	deterministic	process	that	is	continuous	in	
time:	

§ Individuals	have	an	impact																on	their	environment	

§ Reproduction	is	a	function																of	individual	and	environment	
state	

§ Mortality	is	a	function						 of	individual	state	and	environment	
state

§ Individuals	are	born	with	an	i-state							that	is	one	of	a	finite	set	of	
possible	states	at	birth:

with	each	potential	state	at	birth							a	valid	i-state:

�b

�b 2 {�1, ... ,�m}

The	generic	model	for	individual	life	history

�j = (�j1, ... ,�jk) 2 ⌦ ⇢ Rk

�j

dx

da

= g(x ,E )

�(x ,E )

�(x ,E )

µ(x ,E )



Environment	dynamics

§ Environment	variables	may	in	isolation	follow	autonomous	
dynamics:	

or	may	be	functions	of	the	population	(to	model	direct	density	
dependence):

dE

dt
= G (E )

E (t) =

Z

⌦
�(x ,E ) n(t, x) dx



§ In	equilibrium	of	the	structured	population	the	expected	lifetime	
reproduction	equals	1:

§ In	addition,	the	dynamics	of	the	environment	should	be	balanced	by	the	
impact	of	the	population:

or

Computing	an	equilibrium	of	a	structured	model

How	to	compute	these	integrals?

b̃

Z 1

0

�(x(a, Ẽ), Ẽ)F(a, Ẽ) da

| {z }
Lifetime impact on environment

= G

⇣
Ẽ

⌘

Z 1

0

�(x(a, Ẽ), Ẽ)F(a, Ẽ) da

| {z }
Expected lifetime reproduction

= 1

b̃

Z 1

0

�(x(a, Ẽ), Ẽ)F(a, Ẽ) da

| {z }
Lifetime impact on environment

= Ẽ



Computing	an	equilibrium	of	a	structured	model

§ Probability	of	survival	up	to	age	a:	

§ Cumulative	number	of	offspring	up	to	age	a:

§ Cumulative	impact	up	to	age	a:

F(a,

˜

E) = exp

✓
�
Z a

0
µ

⇣
x(↵,

˜

E)

⌘
d↵

◆

H(a, Ẽ) =

Z a

0
�(x(↵, Ẽ), Ẽ)F(↵, Ẽ) d↵

I(a, Ẽ) =

Z a

0
�(x(↵, Ẽ), Ẽ)F(↵, Ẽ) d↵



Equilibrium	conditions

H(1, Ẽ) =

Z 1

0
�(x(↵, Ẽ), Ẽ)F(↵, Ẽ) d↵ = 1

b̃ I(1, Ẽ) = b̃

Z 1

0
�(x(↵, Ẽ), Ẽ)F(↵, Ẽ) d↵ = G(Ẽ)



§ Differentiating	the	probability	of	survival	up	to	age																	leads	to:	

§ Differentiating																			with	respect	to	a yields:

§ Differentiating																			with	respect	to	a yields:

The	computational	approach

F(a, Ẽ )

dF
da

= �µ(x(a, Ẽ), Ẽ)F(a, Ẽ), F(0, Ẽ) = 1

H(a, Ẽ)

dH

da
= �(x(a, Ẽ), Ẽ)F(a, Ẽ), H(0, Ẽ) = 0

dI

da

= �(x(a, Ẽ), Ẽ)F(a, Ẽ), I(0, Ẽ) = 0

I(a, Ẽ)



§ The	equilibrium	of	a	non-linear	structured	population	model	is	
determined	by:

which	has	to	be	solved	(numerically	and	iteratively)	for	the	
unknowns		 and				.

§ The	values	of																			and																	are	evaluated	by	integration	of	
the	ODEs:

Ẽ b̃

H(1, Ẽ ) = 1

b̃ I (1, Ẽ ) = G (Ẽ )

Putting	it	all	together

H(1, Ẽ ) I (1, Ẽ )

8
>>>>>>>>><

>>>>>>>>>:

dx

da
= g(x(a, Ẽ ), Ẽ ), x(0, Ẽ ) = �b

dF
da

= �µ(x(a, Ẽ ), Ẽ )F(a, Ẽ ), F(0, Ẽ ) = 1

dH

da
= �(x(a, Ẽ ), Ẽ )F(a, Ẽ ), H(0, Ẽ ) = 0

dI

da
= �(x(a, Ẽ ), Ẽ )F(a, Ẽ ), I (0, Ẽ ) = 0



Environmental,state

• Resource(density
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),( Exγ

Development

PSPManalysis A	
M
at
la
b/
R/
C	
pa
ck
ag
e

Demographic	analysis
• Population	growth	rate
• Sensitivity	to	model	
parameters

• Stable	population	distribution
• Reproductive	value

Equilibrium	analysis
• Equilibrium	states	dependent	on	parameters
• Detection	of	bifurcation	points	
(saddle-node,	transcritical)

• Continuation	of	bifurcation	points	
dependent	on	2	parameters

Evolutionary	analysis
• Adaptive	dynamics	approach
• Detection	and	classification	
of	Evolutionary	Singular	
Strategies	(ESS)

• ESS	continuation	dependent	
on	parameters

• Computation	of	Pairwise	
Invasibility Plot	(PIP)

• Evolutionary	dynamics
(canonical	equation)

Physiologically	Structured	Population	Models:	Analysis



A	size-structured,	tritrophic example

Size (s) 

D
en

sit
y 

Consumer 

sb sm

Resource 

µ(s,P)

γ (s,R)

g(s,R)

β(s,R)

Predator 

• Ingestion	scales	allometrically with	size
• Adults	continue	growing,	while	reproducing
• Food-dependent	growth	and	reproduction
• Maturation	when	reaching	size	threshold



Predator	per	capita	growth	rate:

Consumer	growth	rate	in	size:

Consumer	fecundity:

Consumer	mortality:

Consumer	foraging:

Resource	turnover:

A	size-structured,	tritrophic example
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µ(s, P )=

8
<

:
µb+

aP

1 + aThB
if s < sV

µb otherwise

B

1 + aThB
� �

⇢ (R
max

�R)

g(s,R) = ⌫

✓
sm

R

Rh +R
� s

◆

�(s,R) = rm
R

Rh +R
s2 if s � sj

�(s,R) = Im
R

Rh +R
s2



Predator	per	capita	growth	rate:

Consumer	growth	rate	in	size:

Consumer	fecundity:

Consumer	mortality:

Consumer	foraging:

Resource	turnover:

A	size-structured,	tritrophic example

Size (s) 

D
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sit
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Consumer 

sb sm

Resource 

µ(s,P)

γ (s,R)

g(s,R)

β(s,R)

Predator 

µ(s, P )=

8
<

:
µb+

aP

1 + aThB
if s < sV

µb otherwise

B

1 + aThB
� �

⇢ (R
max

�R)

g(s,R) = ⌫

✓
sm

R

Rh +R
� s

◆

�(s,R) = rm
R

Rh +R
s2 if s � sj

�(s,R) = Im
R

Rh +R
s2

void Development(int lifestage[POPULATION_NR], 
double *istate[POPULATION_NR],
double *birthstate[POPULATION_NR], 
int BirthStateNr, double E[],
double development[POPULATION_NR][I_STATE_DIM])

{
// Implement the development function below
development[0][0] = NU*(SM*R/(R + RH) - S);

return;
}



Predator	per	capita	growth	rate:

Consumer	growth	rate	in	size:

Consumer	fecundity:

Consumer	mortality:

Consumer	foraging:

Resource	turnover:

A	size-structured,	tritrophic example
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8
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µb+

aP

1 + aThB
if s < sV

µb otherwise

B

1 + aThB
� �

⇢ (R
max
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g(s,R) = ⌫

✓
sm

R

Rh +R
� s

◆

�(s,R) = rm
R

Rh +R
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�(s,R) = Im
R

Rh +R
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void Mortality(int lifestage[POPULATION_NR],
double *istate[POPULATION_NR],
double *birthstate[POPULATION_NR],
int BirthStateNr, double E[],
double mortality[POPULATION_NR])

{
// Implement the mortality function below
if (lifestage[0] == 0)
mortality[0] = MUB + A*P/(1+A*TH*B);

else
mortality[0] = MUB;

return;
}



Equilibrium	analysis	of	non-linear,
density	dependent	models
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1. Starting	from	a	trivial	equilibrium
>> [data1, rep1, bp1, bt1] = ...

PSPMequi(’Test', 'EQ', [1.0E-06 1.0E-06],..);



Equilibrium	analysis	of	non-linear,
density	dependent	models
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1. Starting	from	a	trivial	equilibrium
>> [data1, rep1, bp1, bt1] = ...

PSPMequi(’Test', 'EQ', [1.0E-06 1.0E-06],..);

2.	Starting	from	the	detected	consumer	
invasion	point

>> [data2, rep2, bp2, bt2] =
PSPMequi(’Test', 'EQ', bp1([1 2 5]),..);



Equilibrium	analysis	of	non-linear,
density	dependent	models
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1. Starting	from	a	trivial	equilibrium
>> [data1, rep1, bp1, bt1] = ...

PSPMequi(’Test', 'EQ', [1.0E-06 1.0E-06],..);

2.	Starting	from	the	detected	consumer	
invasion	point

>> [data2, rep2, bp2, bt2] =
PSPMequi(’Test', 'EQ', bp1([1 2 5]),..);

3.	Starting	from	the	detected	predator	
invasion	point

>> [data3, rep3, bp3, bt3] =
PSPMequi(’Test', 'EQ', bp2([1 2 3 7 5]),..);



Equilibrium	analysis	of	non-linear,
density	dependent	models
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1. Starting	from	a	trivial	equilibrium
>> [data1, rep1, bp1, bt1] = ...

PSPMequi(’Test', 'EQ', [1.0E-06 1.0E-06],..);

2.	Starting	from	the	detected	consumer	
invasion	point

>> [data2, rep2, bp2, bt2] =
PSPMequi(’Test', 'EQ', bp1([1 2 5]),..);

3.	Starting	from	the	detected	predator	
invasion	point

>> [data3, rep3, bp3, bt3] =
PSPMequi(’Test', 'EQ', bp2([1 2 3 7 5]),..);
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1. Continuing	consumer	invasion	boundary
>> [data4, rep4] = ...

PSPMequi(’Test’,’BP’,[bp1([1 2]) 0.01],..);

2.	Continuing	predator	invasion	boundary
>> [data5, rep5] =

PSPMequi(’Test’,’BPE’,[bp2([1 2 5]) 0.01],..);

3.	Continuing	predator	persistence	
boundary

>> [data6, rep6] =
PSPMequi(’Test’,’LP’,[bp3([1:5] 0.01]),..);

Equilibrium	analysis	of	non-linear,
density	dependent	models



Evolutionary	Stable	Strategy	(ESS)
§ Selection	gradient:

(computed	numerically,	while	computing	ecological		equilibrium	as	
function	of	a	life	history	parameter)

§ Evolutionary	endpoint:

§ Evolutionary	dynamics:	(Canonical	equation	of	adaptive	
dynamics):

dR0

dq

����
q=qres

=
d

dq

Z 1

0
�(s(a, R̃), R̃) p(a, s(·, R̃), R̃) da

����
q=qres

dR0

dq

����
q=qres

= 0

dqres
d⌧

/ µ (qres)
�0 (qres)

2
b̃ (qres)

dR0

dq

����
q=qres



Adaptive	Dynamics
§ Evolution	in	environment	set	by	ecological	dynamics

• Resident-mutant	interaction:	Resident	sets	the	environment,
,	which	determines	the	mutant’s	fitness

§ Separation	of	evolutionary	and	ecological	timescale
• Mutation	limitation:	Convergence	to	(new)	ecological	

equilibrium	between	mutation	events
• Domination	or	demise:	Positive	fitness	(mutant	growth)	results	

in	take-over,	negative	fitness	leads	to	mutant	disappearance

R̃(qres)

qmut,+qmut,- qmut,+qmut,- qresqres qmut,+qmut,-qresqres

Life	history	trait	(parameter)

R0

R0 = 1



Consumer-resource	model	for	ESS	analysis

�(s,R) = I
max

Rsq

g(s,R) = (s) (��(s,R) � T sp)

�(s,R) =
(1� (s)) (��(s,R) � T sp)

s
b

(s) =

8
><

>:

1 if s  sj

1� 3

✓
s� sj
sm � sj

◆2

+ 2

✓
s� sj
sm � sj

◆3

otherwise

Life	history	functions:



Consumer-resource	model	for	ESS	analysis

@c(t, s)

@t
+

@ (g(s,R)c(t, s))

@s
= �µ c(t, s)

g(s
b

, R) c(t, s
b

) =

Z
sm

sb

�(s,R) c(t, s) ds

dR

dt
= � (R

max

�R) �
Z

sm

sb

�(s,R) c(t, s) ds

Population-level	model:
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Cell	cycle	control:	Cyclin-dependent	kinases



dm

dt
= µm

⇣
1� m

m⇤

⌘ S

⇠ + S

d[CycBT ]

dt
= k1 � (k02 + k002 [Cdh1]) [CycBT ]

d[Cdc20T ]

dt
= k05 + k005

([CycBT ]m)n

Jn
5 + ([CycBT ]m)n

� k6[Cdc20T ]

Tyson	&	Novak	model	for	cell	division

[Cdh1] = G(k03 + k003 [Cdc20T ], k4m[CycB], J3, J4)

G(v1, v2, J1, J2) =
2v1J2

(v2 � v1 + v1J2 + v2J1) +
p

(v2 � v1 + v1J2 + v2J1)2 � 4(v2 � v1)v1J2

With G the	is	the	Goldbeter-Koshland function:



Cell	division

Division:
[CycB]	=	0.1

• Cell	divides	when	[CycB]	drops	
below	0.1	

• Splits	in	2	daughter	cells	with	
mass											and		

• Both	daughter	have	[Cdc20T]	
equal	to	their	mother

�m (1� �)m



dm

dt
= µm

⇣
1� m

m⇤

⌘ S

⇠ + S

d[CycBT ]

dt
= k1 � (k02 + k002 [Cdh1]) [CycBT ]

d[Cdc20T ]

dt
= k05 + k005

([CycBT ]m)n

Jn
5 + ([CycBT ]m)n
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A	structured	model	for	an	entire	cell	population:	
Equilibrium	states	when	competing	for	substrate

[Cdh1] = G(k03 + k003 [Cdc20T ], k4m[CycB], J3, J4)

dS

dt
= D (S0 � S) �

Z 1

0
µm

⇣
1� m

m⇤

⌘
Q

S

⇠ + S
n(t, s) ds

Competing	for	a	limiting	substrate:

Single	cell	model	(core	of	the	population	model):



A	structured	model	for	an	entire	cell	population:	
Computational	approach

§ Take	a	40	x	40	grid	of	initial	states	at	birth	covering	a	range	of	masses	at	
birth	m =	0.3,...,1.0	and	[Cdc20T]	=	0.7,...,1.4

§ From	each	of	these	states	of	birth,	compute	the	life	history	trajectory,	
including	the	contribution	of	daughter	cells	to	potential	states	at	birth

§ Next-generation	matrix	A

• Dominant	eigenvalue	should
equal	1	(	=	R0	)

• Stable	distribution	of	states
at	birth

• Stable	cell	size	distribution

age

[C
dc
20

T]



Competing	for	resources

G1	phase

S	&	G2	phase



High	flow-through	rate	of	medium:	(D	=	0.01)



High	flow-through	rate	of	medium:	(D	=	0.01)



Low	flow-through	rate	of	medium	(D	=	0.006)



Low	flow-through	rate	of	medium	(D	=	0.006)


