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Abstract. Molecular phenotypes are important links between genomic
information and organismic functions, fitness, and evolution. Complex
phenotypes, which are also called quantitative traits, often depend on multiple
genomic loci. Their evolution builds on genome evolution in a complicated way,
which involves selection, genetic drift, mutations and recombination. Here we
develop a coarse-grained evolutionary statistics for phenotypes, which decouples
from details of the underlying genotypes. We derive approximate evolution
equations for the distribution of phenotype values within and across populations.
This dynamics covers evolutionary processes at high and low recombination rates,
that is, it applies to sexual and asexual populations. In a fitness landscape with a
single optimal phenotype value, the phenotypic diversity within populations and
the divergence between populations reach evolutionary equilibria, which describe
stabilizing selection. We compute the equilibrium distributions of both quantities
analytically and we show that the ratio of mean divergence and diversity depends
on the strength of selection in a universal way: it is largely independent of the
phenotype’s genomic encoding and of the recombination rate. This establishes a
new method for the inference of selection on molecular phenotypes beyond the
genome level. We discuss the implications of our findings for the predictability of
evolutionary processes.
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1. Introduction

In recent years, we have witnessed an enormous growth of information from genome
sequence data, which has enabled large-scale comparative studies within and across
species. How this genomic information translates into biological functions is much less
known. Molecular functions integrate the genomic information of their constitutive sites,
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and they can often be associated with specific phenotypes. Many such phenotypes are
quantitative traits: they have a continuous spectrum of values and depend on multiple
genomic sites. For example, the binding of a transcription factor to a regulatory DNA site
can be monitored by its e↵ect on the expression level of the regulated gene.

In an evolutionary context, biological functions and their associated phenotypes are
quantified by their contribution to the fitness of an organism. Such fitness e↵ects can in
principle be uncovered from genomic data by comparative analysis. However, a genome-
based analysis of phenotypic evolution can be exceedingly complicated. The source of
these complications is twofold: quantitative traits often depend on numerous and in
part unknown genomic sites. Moreover, the evolution of these sites is coupled by fitness
interactions (epistasis) and by genetic linkage. For both reasons, the genomic basis of a
complex phenotype is not completely measurable. At the same time, details of site content,
linkage, and epistasis should not matter for the evolution of the phenotype itself. This
calls for an e↵ective, coarse-grained picture of the evolutionary process at the phenotypic
level, which is the topic of this paper. We will show that complex quantitative traits have
universal phenotypic observables, which decouple from the trait’s genomic basis. Such
universality turns out to be important for the practical analysis of a quantitative trait: it
provides a way to infer its fitness e↵ects based solely on phenotypic measurements.

The map from genotype to phenotype is a challenging problem for statistical theory.
The reason is that epistasis and linkage generate correlations in a population: the
population frequency of individuals with a combination of alleles at a set of genomic
sites may be larger or smaller than the product of the single-site allele frequencies. We
refer to these correlations by the standard term linkage disequilibrium (which is quite
misleading, because linkage correlations have nothing to do with disequilibrium). Linkage
disequilibrium is strongest in asexually evolving populations, but it can also be maintained
under sexual reproduction, whenever recombination between genomic loci is too slow
to randomize allele associations [12]. Linkage disequilibrium and epistasis can make the
genomic evolution of a quantitative trait a strongly correlated many-‘particle’ process,
and these correlations are crucial for the resulting phenotype statistics. Any quantitative
understanding of this dynamics must be based on an evolutionary model that contains
selection, mutations, genetic drift, and (in sexual populations) recombination—and yet is
analytically tractable at least in an approximate way. Before we turn to the agenda of this
paper, we briefly summarize current models of genome evolution and their application to
quantitative traits.

All known analytically solvable genome evolution models for multiple sites are based
on the assumption that linkage correlations vanish [5, 17, 20], [33]–[35], [57] or are small [6,
42]. There are two classes of quantitative traits to which these models can be applied. One
of these consists of phenotypes that depend only on a small number of genomic sites. Such
phenotypes are mostly monomorphic and occasionally polymorphic at a single one of their
constitutive sites. Hence, allele changes at di↵erent sites are well separated in time and
linkage disequilibrium is small, regardless of the level of recombination. An example of
such microscopic traits is transcription factor binding sites in prokaryotes and simple
eukaryotes, which typically have about ten functional bases. In a time-independent fitness
landscape, the genomic and phenotypic evolution of microscopic traits leads to simple
equilibrium states of Boltzmann form, which can be used for the inference of selection
(this type of equilibrium is reviewed in section 2) [7, 49]. In this way, fitness landscapes for
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transcription factor binding, which depend on the binding energy as molecular phenotype,
have been inferred from site sequence data in bacteria and yeast [38, 39].

The other, complementary class is phenotypes with a large number of constitutive
sites which are assumed to evolve under rapid recombination, so that linkage correlations
remain small. This assumption is justified in sexual populations, if all of the sites are at
su�cient sequence distance from each other. It implies that the phenotype distribution
in a population is completely determined by the allele frequencies at the constitutive
sites. Examples are an organism’s height, complex disease phenotypes or longevity, which
depend on multiple genes on di↵erent chromosomes. Such macroscopic traits are always
polymorphic at multiple constitutive sites, which leads to a distribution of trait values in a
population. Macroscopic traits are the traditional subject of quantitative genetics, which
focuses on a phenomenological description of these trait distributions [1, 5, 9, 20, 22, 27,
34, 35, 46, 56, 57]. Rapid recombination is a crucial ingredient for existing evolutionary
models of macroscopic traits [17, 33]. As long as linkage disequilibrium remains small,
macroscopic traits also reach genomic and phenotypic Boltzmann equilibria in a time-
independent fitness landscape (for details, see section 2) [16, 17, 22, 33, 55, 57].

Many interesting molecular phenotypes, however, cannot be assumed to evolve close
to linkage equilibrium. The stability of protein and RNA folds depends on their coding
sequence [21, 51], protein binding a�nities depend on the nucleotides encoding the
binding domain [7, 8], complex regulatory interactions depend on cis-regulatory modules
with several binding sites [15, 44], histone–DNA binding involves segments of about 150
base pairs [45]: these are typical examples of intermediate-level phenotypes with tens
to hundreds of constitutive DNA sites. Such mesoscopic phenotypes, which are often
building blocks of macroscopic traits, are generically polymorphic at several constitutive
sites. In asexual populations, mesoscopic traits always evolve under substantial linkage
disequilibrium. This dynamics governs, for example, the evolution of antibiotic resistance
in bacteria [53] and the antigenic evolution in human influenza A [52]. But mesoscopic
traits can build up linkage disequilibrium even in sexual populations, because their
constitutive sites are localized in a small genomic region, which limits the power of
recombination [12]. Genomic evolution of multiple sites under weak recombination is
a strongly correlated process, which generates cooperative phenomena such as clonal
interference and background selection [2, 11, 18, 24, 43, 47, 48]. In other words, the
phenotype distribution in a population is no longer determined by the allele frequencies
at the constitutive sites, but depends on the full distribution of genotypes. In this volume,
Neher and colleagues show that the buildup of sequence correlations with decreasing
recombination rate leads to a transition from allele selection to genotype selection, which
is analogous to the glass transition in the thermodynamics of disordered systems [50].
These correlations lead to the breakdown of known analytical models for quantitative
trait evolution.

The evolution of molecular traits under genetic linkage is the focus of this paper.
Our dynamical model for phenotypes is grounded on the evolution of their constitutive
genotypes by selection, mutations, and genetic drift, which is reviewed in section 2. In
section 3, we derive approximate, self-consistent equations for the asexual evolution of
trait values in a population, which are parametrized by their mean and variance (called
trait diversity). We show that this dynamics is quite di↵erent from trait evolution in
sexual populations: in a time-independent fitness landscape, the joint distribution of trait
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mean and diversity converges to a non-equilibrium stationary state, yet the marginal
distributions of both quantities still reach solvable evolutionary equilibria. In section 4,
we apply this model to evolution in a fitness landscape with a single trait optimum, where
these equilibria describe the trait statistics under stabilizing selection. We compute the
expected equilibrium diversity within populations, the divergence across populations, and
the distance of a population from the fitness peak. In section 5, we derive the statistics of
population fitness and entropy in the equilibrium ensemble. Specifically, we compute the
genetic load, which is defined as the di↵erence between the maximum fitness and the mean
population fitness, and the fitness flux, which quantifies the total amount of adaptation
between the neutral state and the stabilizing-selection equilibrium. The equilibrium
entropy statistics is shown to determine the predictability of evolutionary processes from
single-population data. All our analytical results are confirmed by numerical simulations.

Throughout the paper, we compare our derivations and results for non-recombining
populations with their counterparts for rapid recombination. In both processes, stabilizing
selection reduces trait divergence and diversity, and its e↵ects on divergence are always
stronger than on diversity. The reason will become clear in section 4: the e↵ective strength
of selection on trait divergence is greater than that on diversity, albeit for di↵erent
reasons in sexual and in asexual populations. In particular, we show in section 6 that
the equilibrium ratio of trait divergence and diversity shows a nearly universal behavior:
it decreases with increasing strength of selection in a predictable way, but it depends
only weakly on the number of constitutive sites, their selection coe�cients, and the
recombination rate. Hence, this ratio provides a new, quantitative test for stabilizing
selection on quantitative traits, which does not require genomic data and is applicable
at arbitrary levels of recombination. The agenda of the paper is summarized in figure 1.
For the reader not interested in any technical details, the summary of genome evolution
(section 2.4) together with the basics of trait statistics (section 3.1) and stabilizing
selection (first part of section 4) provide a fast track to the selection test in section 6.

2. Genome evolution

In this section, we review the sequence evolution models underlying our analysis of
quantitative traits. All of these models are probabilistic. They describe the dynamics
of an ensemble of populations, any one of which is described by the frequencies of its
genotypes. The generic genotype frequency ensemble is quite intricate, because it is neither
observable nor computationally accessible. However, this ensemble will serve as the basis
for our theory of quantitative traits for non-recombining traits. The ensemble description
simplifies in two well known limit cases: the weak-mutation regime, where a population
reduces to a single fixed genotype, and the strong-recombination regime, where genotype
frequencies can be expressed by allele frequencies at individual genomic sites.

2.1. Evolution of genotypes

At the most fundamental genomic level, a population is a set of genotypes. A genotype
is a sequence a = (a1, . . . , a`

) of length ` from a k-letter alphabet (with k = 4 in actual
genomes and k = 2 in our simplified models); there are K = k` such genotypes. In a
given population, each genotype has a frequency xa � 0 with the constraint

P
ax

a = 1.
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Figure 1. Evolution of a quantitative trait under stabilizing selection (schematic).
The trait E evolves in a fitness landscape f(E) favoring a single trait value E⇤

(red line, upper panel), which can be compared to neutral evolution (lower panel).
Its dynamics is a stochastic process, which results from the underlying genome
evolution (section 2). This process can be described by an ensemble of populations
(section 3). An individual population from the ensemble has a trait distribution
with mean � and variance (diversity) �; two such populations are shown as
brown curves. The trait mean is at a distance �̂ ⌘ � � h�i from the ensemble
average h�i and at a distance ⇤ ⌘ � � E⇤ from the optimal trait value E⇤.
The phenotypic population ensemble is characterized by the average divergence
between populations (which equals twice the ensemble variance h�̂2i), the average
diversity h�i, and the average distance from the trait optimum, h⇤i. Stabilizing
selection reduces all of these quantities compared to neutrality, but the relative
change is larger for h�̂2i and h⇤i than for h�i (section 4). Our theory describes a
number of important characteristics of the population ensemble: genetic load, free
fitness and predictability of evolution (section 5). The ratio between divergence
and diversity is the basis of a new test for stabilizing selection on quantitative
traits (section 6).

We describe the population state by recording the linearly independent frequencies
x = (x1, . . . , xK�1) for a set A of K � 1 genotypes (the one remaining, arbitrarily chosen
reference genotype a

K

has the frequency xK = 1 � P
a2Axa).

The evolution of genotypes is a stochastic process, which generates a probability
distribution of genotype frequencies, P (x, t). This distribution describes an ensemble of
independently evolving ‘replicate’ populations and follows a generalized Kimura di↵usion
equation [19, 31],

@

@t
P (x, t) =

X

a,b2A


1

2N

@2

@xa@xb
gab(x) � @

@xa
(ma(x) + gab(x)sb(x))

�
P (x, t). (1)

Here and below, we adopt the convention that di↵erential operators act on all functions
to their right. The first term on the right-hand side of equation (1) accounts for stochastic
changes of genotype frequencies by reproductive fluctuations in a finite population (i.e., by
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genetic drift). This term is proportional to the inverse of the e↵ective population size N
and to the di↵usion coe�cients

gab(x) =

(
�xaxb if a 6= b

xa(1 � xa) if a = b.
(2)

The second term describes deterministic frequency changes by mutations. In asexually
reproducing populations, the coe�cients ma(x) are given in terms of the mutation rates
µb

a = µa!b between genotypes,

ma(x) =
X

b

(µa
b xb � µb

a xa); (3)

in sexual populations, there are additional contributions from recombination. The third
term describes natural selection. Its coe�cients are fitness di↵erences, sb ⌘ f(b) � f(a

K

),
where f(b) denotes the reproduction rate (Malthusian fitness) of a genotype b 2 A and
f(a

K

) is the corresponding rate for the reference genotype a

K

. These k � 1 selection
coe�cients characterize the dynamics of the linearly independent genotype frequencies
x = (x1, . . . , xK�1). Here we consider the simplest case, where all reproduction rates are
frequency- and time-independent constants. In that case, the selection coe�cients sb can
be written as the gradient of a scalar fitness landscape F (x),

sb(x) =
@

@xb
F (x), (4)

which is simply the mean population fitness,

F (x) = f̄(x) ⌘
X

a

f(a)xa (5)

(see [41] for a discussion of more general cases). Although the probability distribution
P (x, t) of genotype frequencies gives a complete description of an evolving population
ensemble, it is not an observable quantity. Even for moderate genome length `, there are
vastly more possible genotype distributions x than can be recorded from the history of a
single population or even from an ensemble of independently evolving populations. Like
the probability distribution over phase space in statistical mechanics, this distribution
should be regarded as a conceptual and computational intermediate: P (x, t) is calculated
using maximum-entropy postulates, and it is used to define and predict expectation values
of observable quantities.

Importantly, the definition of expectation values involves averaging at two distinct
levels. In a given population, the genotype frequencies x determine the allele frequencies
at individual genomic sites,

ya

i

⌘ �a

i

=
X

a

�a

i

xa, (6)

the haplotype (allele combination) frequencies at pairs of sites,

yab

ij

⌘ �a

i

�b

j

=
X

a

�a

i

�b

j

xa, (7)
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and so on, which are conveniently represented as averages of the ‘spin’ variables

�a

i

⌘
(

1 if a
i

= a,

0 otherwise.
(8)

These averages within a population are denoted by overbars. Connected correlation
functions at a single site,

⇡a

i

⌘ (�a

i

� ya

i

)(�a

i

� ya

i

) = ya

i

(1 � ya

i

), (9)

are components of the sequence diversity ⇡
i

=
P

k�1
a=1⇡

a

i

; correlations between di↵erent sites,

⇡ab

ij

⌘ (�a

i

� ya

i

)(�b

j

� yb

j

) = yab

ij

� ya

i

yb

j

(i 6= j), (10)

measure linkage disequilibrium, i.e., biases in the association of alleles to haplotypes within
a population. For all of these quantities, the genotype frequency distribution P (x, t) defines
expectation values in an ensemble of independently evolving populations,

h�a

i

�b

j

· · ·i ⌘
Z

�a

i

�b

j

· · · P (x, t) dx; (11)

averages across populations are denoted by angular brackets, h·i. Such nested correlation
functions can often be decomposed into independent fluctuation components within and
across populations; for example,

h �a

i

�b

j

i = h �a

i

�b

j

i + h (�a

i

� ya

i

) (�b

j

� yb

j

)i = hya

i

yb

j

i + h⇡ab

ij

i. (12)

In particular, fitness interactions (epistasis) can generate allele frequency correlations
hya

i

yb

j

i even if linkage disequilibrium vanishes.
All frequency correlation functions of the form (11) can, in principle, be computed

from the solution of the di↵usion equation (1). This is impossible in practice, however,
because no general analytical solution exists. In particular, the distribution P (x, t) does
not converge to an evolutionary equilibrium, which is defined as a state with detailed
balance (see [40] for a review of detailed balance in an evolutionary context). We remind
the reader that a di↵usion equation of the form (1) has an equilibrium distribution if
and only if the vector field va(x) ⌘ P

b2A(ma(x) + gab(x)sb(x)) satisfies the integrability
conditions,

@

@xb

X

a0

gaa0 (x)va0
(x) � @

@xa

X

a0

gba0 (x)va0
(x) = 0, (13)

which implies that v↵(x) can be written as the gradient of a scalar function. It is easy
to see that the frequency-dependence of the di↵usion matrix gab(x) makes already the
mutation vector field ma(x) non-integrable. Hence, even if the selection coe�cients sb(x)
are the gradient of a scalar fitness landscape as given by equation (4), there is no general
evolutionary equilibrium. We now discuss the two known special cases in which the
di↵usion equation (1) does have a solvable equilibrium, which is the analogue of the
Boltzmann equilibrium in statistical thermodynamics.
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2.2. Weak-mutation regime

This regime is defined by a low genome- and population-wide mutation rate per generation,
µN` ⌧ 1 [25]. With typical values µN ⇠ 10�2, this regime applies to short sequence
segments with a length up to about 10 base pairs, which are the genomic basis of
microscopic traits. Transcription factor binding sites in prokaryotes and simple eukaryotes
with a typical length of about 10 base pairs are examples of this kind [38, 39]. In such
segments, a single genotype is fixed in the population at most times. This genotype
evolves through occasional polymorphisms at a single genomic site, but co-occurrence
of polymorphisms at multiple sites can be neglected. We can then project the Kimura
equation (1) onto a master equation on the space of fixed genotypes,

@

@t
P (a, t) =

X

b

[ub!aP (b, t) � ua!bP (a, t)]. (14)

The substitution rates are given by the classic Kimura–Ohta formula [30, 32],

ua!b = µa!b2N(f(b) � f(a))/(1 � exp[2N(f(b) � f(a))], (15)

with selection coe�cients given by the discrete fitness landscape f(a). We make an
assumption on neutral evolution: it occurs by point mutations with site-independent rates
µ

a!b

, which satisfy the detailed-balance relations

p0(a)µ
a!b

= p0(b)µ
b!a

. (16)

This detailed-balance assumption, which is part of all standard neutral mutation models,
reduces the number of independent rate constants from 12 to nine. The resulting
equilibrium single-nucleotide distribution p(a) (a = 1, . . . , k) describes the e↵ect of
mutational biases (if all rates are symmetric, µ

a!b

= µ
b!a

, it leads to a flat single-
nucleotide equilibrium p0(a) = 1/k). The detailed-balance condition in the weak-mutation
regime is much weaker than the corresponding condition (13) for frequency evolution,
which constrains an entire function va(x).

In an arbitrary fitness landscape f(a), the full dynamics (14) with (16) has an
equilibrium probability distribution of fixed genotypes [7, 49]

Peq(a) =
1

Z
P0(a) exp[2Nf(a)], (17)

which is the product of the factorizable neutral equilibrium

P0(a) =
`Y

i=1

p0(ai

) (18)

and the Boltzmann factor exp[2Nf(a)]. Here and below, Z denotes a normalization factor.
A generic fitness landscape generates cross-population allele correlations hya

i

yb

j

i between
sites, but linkage disequilibrium vanishes without any assumptions on the recombination
rate.

2.3. Strong-recombination regime

In this regime, linkage correlations become small because of rapid allelic reassortments in
the population. We can then approximate the frequency of a genotype by the product of
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its allele frequencies,

xa = ya1
1 · · · ya`

`

. (19)

This approximation, which we will refer to as free recombination, describes complete
linkage equilibrium. It becomes exact in the limit of infinite recombination rate and
infinite population size. Linkage equilibrium is the standard assumption of quantitative
genetics [20, 22], [33]–[35]; it is often applied to large genomes in sexually reproducing
populations, which are the genomic basis of macroscopic quantitative traits. Given the
factorization (19), we can project the Kimura equation (1) onto a di↵usion equation for
the joint distribution of allele frequencies. In the simplest case of a two-letter genomic
alphabet, this equation takes the form

@

@t
P (y, t) =

`X

i=1


1

2N

@2

@y2
i

g(y
i

) � @

@y
i

(m(y
i

) + g(y
i

)s
i

(y))

�
P (y, t). (20)

Here, y = (y1, . . . , y`

) denotes the set of allele frequencies, g(y) = y(1 � y) and m(y) =
µ(1 � 2y) are the di↵usion and mutation coe�cients, and s

i

(y) = @F (y)/@y
i

are the
selection coe�cients for alleles, with F (y) =

P
af(a) ya1

1 · · · ya`
`

. In an arbitrary fitness
landscape F (y), the projected Kimura equation has an equilibrium distribution [54, 55],

Peq(y) =
1

Z
P0(y) exp[2NF (y)], (21)

which is the product of the factorizable neutral equilibrium

P0(y) =
1

Z0

`Y

i=1

[y
i

(1 � y
i

)]�1+2µN (22)

and the Boltzmann factor, exp[2NF (y)]. In this case, equilibrium emerges because the
neutral distribution is the product of one-dimensional allele frequency distributions, for
which the integrability condition (13) is always fulfilled. Just as in the weak-mutation
regime, a generic fitness landscape generates allele frequency correlations hya

i

yb

j

i, which are
compatible with linkage equilibrium. The strong-recombination calculus can be extended
to populations with a large but finite recombination rate [17, 42]. Such populations still
reach an evolutionary equilibrium of the form (21); however, the neutral distribution P0(y)
no longer factorizes and there are small but systematic linkage correlations h⇡

ij

i [42].

2.4. Summary

Genomic evolution under mutations, recombination, genetic drift, and selection can be
described by a Kimura di↵usion equation at the genotype level [19, 31]. The general
Kimura equation does not have a closed solution. In the regimes of low mutation
rate or high recombination rate, where linkage disequilibrium is small, we can project
this equation onto fixed genotypes or allele frequencies, respectively. These projections
are shown in table 1. The projected equations have solvable equilibria of the form
P = P0 exp[2NF ]; see equations (17) and (21). The ‘Boltzmann’ factor exp[2NF ] links
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Table 1. From genotypes to phenotypes. This table shows the genomic and
phenotypic stationary population ensembles discussed in the text. These
ensembles are obtained by di↵erent projections of the di↵usive genotype dynamics
(1) under time-independent selection, which are marked by arrows. In the low-
mutation regime, we obtain an equilibrium distribution of fixed genotypes,
which can be projected further onto an equilibrium of fixed trait values; see
equations (17) and (33). In the strong-recombination regime, we obtain an
equilibrium distribution of allele frequencies, which can be projected further
onto a joint equilibrium of trait mean and diversity; see equations (21) and
(34). For complex traits evolving without recombination, we obtain a stationary
non-equilibrium distribution of trait mean and diversity, which can be projected
further onto equilibrium marginal distributions; see equations (42), (48) and (52).

the equilibrium probability distribution under time-independent selection, P , with the
corresponding distribution for neutral evolution, P0; this relation can serve as a starting
point for the inference of selection. However, genomic equilibria do not exist for strongly
coupled multi-site evolution with large linkage disequilibrium, which is common in
asexual populations and even in sexual populations for compact, intermediate-size genomic
regions [12].

3. Evolution of quantitative traits

In this section, we first introduce the basic statistical observables for quantitative traits. In
the low-mutation and in the strong-recombination regime, we obtain phenotypic equilibria
by projection from the genomic equilibrium distributions discussed in section 2. For
complex traits evolving under linkage disequilibrium, we show that projection of the
general genotype dynamics leads to a stationary non-equilibrium distribution, which
describes the statistics of trait divergence and diversity under time-independent selection.
Further projections lead to equilibrium marginal distributions of trait divergence and
diversity, which are the basis for our subsequent analysis of stabilizing selection. The
projections from genomic to phenotypic distributions are also shown in table 1.
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3.1. Trait statistics within and across populations

The subject of this paper is the evolution of quantitative traits with a heritable component,
which depends on an individual’s genotype. Here we study the simplest case of an additive
map from genotype to phenotype, and we assume a binary genomic alphabet (extension
to a k-letter alphabet is straightforward). Any phenotype E can then be written in the
form

E(a) =
`X

i=1

E
i

�
i

with �
i

⌘
(

1 if a
i

= a⇤
i

,

0 otherwise.
(23)

Here the phenotype is measured from its minimum value, a = (a1, . . . , a`

) is the genomic
sequence at its constituent sites, a⇤

i

is the allele conferring the larger phenotype at a given
site, and E

i

> 0 is the phenotypic e↵ect at that site, i.e., the di↵erence in trait value
between the two alleles. We define the allelic average �0 and the overall e↵ect amplitude
E0 by

�0 ⌘ 1
2

`X

i=1

E
i

, E2
0 ⌘ 1

4

`X

i=1

E2
i

. (24)

We are interested in the evolution of complex molecular traits, which depend on
multiple genomic sites. If the number of constituent sites is su�ciently high (such that
µN` is of order unity or larger), such traits are generically polymorphic in a population,
even if most individual sites are monomorphic (i.e., ✓ ⌘ µN ⌧ 1, which is the case in
most populations). The trait values in the individuals of a population follow a distribution
W (E). Here we parametrize this distribution by its mean and its variance, which is called
the trait diversity [4, 10, 17, 34]:

� ⌘ E =
X

a

E(a)xa, � ⌘ E2 � �2 =
X

a

E2
a xa �

X

a,b

EaEbxaxb. (25)

Using equation (6), the trait mean can be written as a function of the allele frequencies,

�(y) =
`X

i=1

E
i

�
i

=
`X

i=1

E
i

y
i

. (26)

The trait diversity can be decomposed into the additive trait diversity �1(y), which
depends only on the allele frequencies, and the trait autocorrelation �2(⇡), which depends
on the linkage disequilibria between the constituent loci,

�(y, ⇡) =
`X

i,j=1

E
i

E
j

(�
i

�
j

� �
i

�
j

)

=
`X

i=1

E2
i

y
i

(1 � y
i

) +
X

i6=j

E
i

E
j

⇡
ij

⌘ �1(y) + �2(⇡), (27)

where we have used equations (9) and (10). As will become clear, the trait diversity is
therefore more strongly a↵ected by linkage and recombination than the trait mean. In the
strong-recombination approximation of quantitative genetics, the population is at linkage
equilibrium and the trait diversity reduces to its additive part, � ' �1. Under finite
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recombination, stabilizing selection generates a negative trait autocorrelation �2, and the
assumption of linkage equilibrium will lead to an overestimation of �.

Similarly to genotype evolution, the stochastic evolution of a quantitative trait
generates a probability distribution Q(�, �, t), which describes an ensemble of
independently evolving populations, each having a trait distribution with mean � and
variance �; see also [10]. The probability Q(�, �, t) is a sum of probabilities of genotype
frequencies,

Q(�, �, t) =
Z
�(�(y(x)) � �) �(�(y(x), ⇡(x)) � �)P (x, t) dx, (28)

where �(·) is the Dirac delta function. Furthermore, we assume that selection acts on a
trait’s constituent genotypes only via the trait itself,

f(a) = f(E(a)); (29)

that is, all genotypes with the same trait value E have the same fitness f(E). The
genotypic fitness landscape F (x) given by equation (5) then defines a phenotypic fitness
landscape

F (�, �) ⌘ f̄(�, �) = f(�) + 1
2� f 00(�), (30)

which contains the leading terms in the Taylor expansion of f(E) around the trait mean �.
The phenotypic evolutionary scenario is illustrated in figure 1 for evolution in a single-peak
landscape f(E) and for neutral evolution (these cases are analyzed in detail in section 4).
Each population drawn from the ensemble distribution Q(�, �) has a trait distribution
with mean � and variance �. The trait mean of a given population is at a distance

�̂ ⌘ � � h�i (31)

from the ensemble average h�i, at a distance

⇤ ⌘ � � E⇤ (32)

from the optimal trait value E⇤, and two populations have a square trait distance
(�1 � �2)2, which is called their trait divergence. Statistical theory predicts ensemble
averages such as h�2i, h�i, h⇤i, and h(�1 � �2)2i = 2h�̂2i. In this paper, we focus on
stationary ensembles under time-independent selection. The trait divergence can also be
defined for a single population at two di↵erent times, D(t2 � t1) ⌘ (�(t2) � �(t1))2, or
more generally for two populations with a common ancestor. Under time-independent
selection, D(t) reaches the equilibrium ensemble divergence for long times, lim

t!1 hD(t)i =
h(�1 � �2)2i. The statistics of time-dependent trait divergence will be analyzed in another
paper [28].

The projection from genotypes to phenotypes given by equations (28) and (30) can
immediately be put to use in the regimes of low linkage disequilibrium discussed in
section 2, where an evolutionary equilibrium exists at the genomic level. In the weak-
mutation regime, we obtain an equilibrium distribution of fixed phenotype values by
projection from equation (17),

Qeq(E) =
1

Z
Q0(E) exp[2Nf(E)]; (33)
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this type of equilibrium distribution has been used in [7, 38, 39]. In the strong-
recombination regime, the phenotypic equilibrium obtained by projection from
equation (21),

Qeq(�, �) =
1

Z
Q0(�, �) exp[2NF (�, �)]. (34)

has been analyzed in detail in [4, 17].

3.2. Joint evolution of trait mean and diversity

As discussed in section 3.1, this equilibrium calculus is not applicable to correlated
evolutionary processes in non-recombining or slowly recombining genomes, which evolve
large values of linkage disequilibrium. To analyze such processes, we proceed di↵erently: we
directly use the Kimura equation for genotypes to obtain by projection a self-consistent,
approximate di↵usion equation for the phenotypic ensemble distribution Q(�, �, t). In this
paper, we study the case of strictly asexual, non-recombining populations. By projection
from equation (1), we find the phenotypic di↵usion equation

@

@t
Q(�, �, t) =


1

2N

✓
@2

@�2
g�� +

@2

@�2
g��

◆
� @

@�

�
m� + g��s�

�

� @

@�

�
m� + g��s�

��
Q(�, �, t) (35)

with di↵usion coe�cients g��, g��, mutation coe�cients m�, m�, and selection coe�cients
s�, s� that depend on the variables � and �. We obtain the diagonal di↵usion coe�cients

g�� =
X

a,b

@�

@xa

@�

@xb
gab

=
X

a,b

E(a)E(b)
⇥�xaxb(1 � �b

a ) + xa(1 � xa)�b
a

⇤

= (E � �)2 = �, (36)

g�� =
X

a,b

@�

@xa

@�

@xb
gab

=
X

a,b

(E(a)2 � 2EE(a))(E2
b � 2EE(b))

⇥�xaxb(1 � �b
a ) + xa(1 � xa)�b

a

⇤

= (E � �)4 � �2 ⇡ 2�2. (37)

These di↵usion coe�cients reflect stochastic changes in trait mean and diversity by
sampling. It is clear that the fluctuation amplitude (36) for the trait mean is set by
the trait diversity. The corresponding amplitude (37) for the trait diversity is specific to
asexual evolution: sampling of a set of complete genotypes with trait values Ea from a
Gaussian distribution W (E) with variance � leads to a distribution of sample variances
with variance 2�2. This relation changes in recombining populations, where sampling
is broken down to individual alleles. For more general trait distributions W (E), the
amplitude g�� given by equation (37) involves higher moments [17, 42]; that is, the
closed form (1) of the dynamics for � and � is a truncation. As shown by our numerical
results, this truncation leads to accurate approximations for complex quantitative traits,
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because their actual trait distribution is approximately Gaussian. As we have anticipated
in writing equation (35), o↵-diagonal di↵usion can be neglected by symmetry,

g�� =
@�

@xa

@�

@xb
gab

= (E2(a) � 2EE(a))E(b)
⇥�xaxb(1 � �b

a ) + xa(1 � xa)�b
a

⇤

= (E � �)3 ⇡ 0. (38)

This coe�cient would lead to additional terms, such as (2N)�1(@2/@�@�)g��Q(�, �, t).
The mutation coe�cients are

m� =
`X

i=1

@�

@y
i

µ(1 � 2y
i

)

=
`X

i=1

E
i

µ(1 � 2y
i

) = �2µ(� � �0) (39)

m� =
`X

i=1

@�

@y
i

µ(1 � 2y
i

) +
X

i6=j

@�

@y
ij

µ(y
i

+ y
j

� 4y
ij

)

= �4µ(� � E2
0) � �

N
+ O(✓2), (40)

where �0 and E0 are given by equation (24). The term �/N in (40) appears due to the
nonlinear dependence of the trait diversity on the allele frequencies y

i

(see, e.g., chapter
4 of [23]). Finally, the selection coe�cients are the gradient of the phenotypic fitness
landscape (30),

s� =
@

@�
F (�, �), s� =

@

@�
F (�, �). (41)

The two-dimensional di↵usion equation (35) gives a closed, analytical description of
trait evolution under complete genetic linkage. As we show in section 3.3, it provides
numerically accurate results at least for the marginal distributions Q(�) and Q(�) over
a wide range of evolutionary parameters. However, it has the same basic di�culty as the
genotypic Kimura equation (1): it does not have an equilibrium solution, because the
mutation coe�cient field is non-integrable, @((g��)�1m�)/@� � @((g��)�1m�)/@� 6= 0.
In the appendix, we show that equation (35) leads instead to a non-equilibrium stationary
distribution Qstat(�, �), which is shown in figure 2. This distribution satisfies the scaling
relation

Qstat(�, �) = `�3/2 Q̂stat(`
�1/2(� � h�i), `�1�) (42)

for large values of `, with ensemble averages h�i and h�i of order `. According to this
relation, the average h�i and the fluctuations �̂ ⌘ �� h�i of the trait mean in the stationary
ensemble scale in accordance with the central limit theorem,

h�i ⇠ `, h�̂ni ⇠ `n/2 (n = 2, 3, . . .), (43)

which implies that fluctuations become subleading in the large-` limit, � = h�i ± O(`1/2).
This scaling also occurs in sexual populations. It is analogous to the thermodynamic limit
for macroscopic systems, which is familiar in statistical thermodynamics [17]. However,
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Figure 2. Non-equilibrium stationary trait distribution under complete genetic
linkage. Stationary joint distribution of trait mean and diversity, Qstat(�,�), for
a non-recombining population in a quadratic fitness landscape. The figure shows
simulation results for a quantitative trait with ` = 100 constituent sites of equal
e↵ect. The distribution Qstat(�,�) is Gaussian in the � direction, but strongly
non-Gaussian in the � direction (the resulting marginal distributions are shown
in figure 3). It maintains a stationary probability current, which is shown in
figure A.1. Other system parameters: neutral sequence diversity ✓ = µN = 0.0125,
scaled fitness landscape 2Nf(E) = c(E � E⇤)2/E2

0 of strength c = 2.5 with a
fitness optimum E⇤ = 0.5�0.

the average h�i and the fluctuations �̂ ⌘ � � h�i of the trait diversity scale in a di↵erent
way,

h�i ⇠ `, h�̂ni ⇠ `n (n = 2, 3, . . .). (44)

This scale-invariance of the trait diversity statistics in large-` limit is a consequence of
coherent, genome-wide linkage disequilibrium fluctuations in the absence of recombination.
It is generated by sampling from a set of genotypes with trait values Ea from a distribution
W (E) with variance � ⇠ `. There is no central limit theorem, because the number of
these genotypes grows only weakly with ` [50]. In contrast, fast recombination generates a
number of genotypes that grows exponentially with `, which leads to the standard scaling
h�̂ni ⇠ `n/2 given by the central limit theorem (see [17] and the discussion in section 3.4).
These di↵erences in fluctuation statistics are mirrored by the properties of population
genealogies: for asexual evolution, there is a single genome-wide genealogy of all genotypes.
Standard coalescence theory then predicts diversity fluctuations distributed exponentially,
with variance proportional to the square of the coalescence time, which is of order N2,
and to the square of the genome-wide mutation rate, which in turn is proportional to
`2. In contrast, recombination generates many parallel genealogies, which average out the
diversity fluctuations.

Because the joint evolution of trait mean and diversity is a non-equilibrium process,
the di↵usion equation (35) does not have a simple analytical solution. We now project
this dynamics further onto its marginals for � and �. The ensemble distributions Q(�, t)
and Q(�, t) follow coupled one-dimensional di↵usion equations, which turn out to have
analytical equilibrium solutions.
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3.3. Marginal evolution of the trait mean

By integrating over the trait diversity in equation (35), we obtain a one-dimensional
di↵usion equation for the trait mean. This integration amounts to replacing the variable
�, which appears in the di↵usion coe�cient g�� and in the selection coe�cient s�, by its
expectation value h�i. The projected equation reads

@

@t
Q(�, t) =


g̃��

2N

@2

@�2
� @

@�

�
m� + g̃��s̃�

��
Q(�, t) (45)

with the e↵ective di↵usion coe�cient

g̃�� = h�i, (46)

the mutation coe�cient m� = �2µ(� � h�i0) given by equation (39), and the selection
coe�cient s̃�, which is the gradient of the e↵ective fitness landscape

F̃ (�) = f̄(�, h�i) = f(�) + 1
2 h�i f 00(�). (47)

This equation has an equilibrium solution

Qeq(�) =
1

Z
Q̃0(�) exp [2NF̃ (�)], (48)

with

Q̃0(�) '
s

2✓

⇡h�i exp


� 1

2

(� � �0)2

h�i/4✓
�

(49)

and �0 given by equation (24). The Gaussian form of Q̃0(�) is valid for su�ciently large
values of `. It implies the scaling form (43) of the average and fluctuations of �, in
accordance with the central limit theorem. Since � depends only on the allele frequencies
of the constituent loci and not on their linkage correlations, the di↵usion equation (45)
and the form of its solution (48), (49) are valid regardless of recombination. However,
the distribution Q̃0(�) depends on the average diversity h�i under selection, which enters
the e↵ective di↵usion coe�cient (46). Hence, Q̃0(�) di↵ers from the neutral distribution
Q0(�). Because h�i depends on recombination (see below), the statistics of the trait mean
also acquires a small but systematic dependence on the recombination rate.

3.4. Marginal evolution of the trait diversity

For non-recombining populations, we obtain a one-dimensional di↵usion equation for the
trait diversity from equation (35),

@

@t
Q(�, t) =


1

2N

@2

@�2
g�� � @

@�

�
m� + g��s̃�

��
Q(�, t) (50)

with the di↵usion coe�cient g�� = 2�2 given by (37), the mutation coe�cient m� =
�4µ(� � E2

0) � �/N given by (40), and the selection coe�cient s̃�, which is the gradient
of the e↵ective fitness landscape

F̃ (�) = 1
2 hf 00(�)i �. (51)
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This equation has an equilibrium solution

Qeq(�) =
1

Z
Q0(�) exp[2NF̃ (�)], (52)

where Q0(�) is the neutral equilibrium

Q0(�) =
1

Z0
��3�4✓ exp


� 4✓E2

0

�

�
(no recombination) (53)

with the normalization Z0 = (2✓E2
0)

�2�4✓�Euler(2 + 4✓). This distribution has mean and
variance

h�i0 = 4✓E2
0 (1 � 4✓) + O(✓3),

h(� � h�i0)
2i0 = 4✓E4

0 (1 � 8✓) + O(✓3) (no recombination).
(54)

It is of the form Q0(�) = `�1Q̂0(`�1�), with a scale-invariant shape function Q̂0, which
implies coherent scaling (44) of the diversity mean and fluctuations (see also appendix).

The trait diversity equilibrium (52) and (53) can be compared with its counterpart for
free recombination. The equilibrium distribution Qeq(�) for the free-recombining traits
is also of the form (52), with the neutral distribution Q0(�) obtained by projection from
the allele frequency distribution (22),

Q0(�) =
Z
�

 

� �
`X

i=1

E2
i

y
i

(1 � y
i

)

!

P0(y) dy1 · · · dy
`

(free recombination). (55)

For su�ciently large `, this distribution is again Gaussian with mean and variance [17]

h�i0 = 4✓E2
0 (1 � 4✓) + O(✓3),

h(� � h�i0)
2i0 = ✓

`X

i=1

E4
i

✓
1

6
� 14✓

9

◆
+ O(✓3) (free recombination),

(56)

which implies the standard scaling of diversity average and fluctuations, h�i ⇠ ` and
h�̂ni ⇠ `n/2 for (n = 2, 3, . . .).

In a generic fitness landscape, the equilibrium distributions (48) and (52) for trait
mean and diversity depend on each other, and a consistent joint solution has to be
obtained iteratively. Mean and diversity decouple in a linear fitness landscape [4], and
the dynamics of the diversity is still autonomous in a quadratic fitness landscape. This
case will be discussed in section 4.

We test our analytical results by simulations of a Fisher–Wright process under
stabilizing selection and at neutrality. We evolve a population of N individuals with
genomes a

(1), . . . , a(N), which are bi-allelic sequences of length `. A genotype a defines
a phenotype E(a) =

P
`

i=1Ei

a
i

; the phenotypic e↵ects E
i

are drawn from various
distributions. In each generation, the sequences undergo point mutations with a rate
⌧µ per generation (where ⌧ is the generation time). The sequences of the next generation
are then obtained by multinomial sampling; the sampling probability is proportional to
[1 + ⌧f(E(a)] with the fitness f(E) = �c0(E � E⇤)2 (details are given in section 4). For
sexual populations, we permute the alleles a

i,1, . . . , ai,N

at each genomic site i between
the individuals in each generation, which amounts to recombination with an infinite
rate. As shown in figure 3, the analytical equilibrium distributions Qeq(�) and Q0(�)
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Figure 3. Equilibrium trait distributions under stabilizing selection and
at neutrality. (a) Equilibrium distribution Qeq(�) of the trait mean in
a quadratic fitness landscape (filled circles) and corresponding neutral
equilibrium Q0(�) (empty circles) (green, no recombination; blue, free
recombination). (b) Equilibrium distribution Qeq(�) of the trait diversity
(green, no recombination; blue, free recombination). Theory predictions for
these distributions are shown as solid and dashed lines. System parameters:
` = 100 trait loci of equal e↵ect E

i

= 1 (i = 1 . . . `); neutral sequence diversity
✓ = µN = 0.0125; scaled fitness landscape 2Nf(E) = �c(E �E⇤)2/E2

0 of strength
c = 5 with a fitness optimum E⇤ = 0.7L. Results for other e↵ect distributions are
shown in figure 6.

given by equations (48) and (49), as well as the distributions Qeq(�) and Q0(�) given
by equations (53) and (55), are in good agreement with simulation results. Stabilizing
selection shifts the average and reduces the variance of the distribution Q(�), and it
reduces the average and variance of the distribution Q(�) compared to neutral evolution.
The dependence of these e↵ects on the strength of selection is analyzed in section 4.

4. Trait equilibria under stabilizing selection

We now apply our statistical model to quantitative traits under stabilizing selection, a
scenario described by evolutionary equilibrium in a quadratic fitness landscape,

f(E) = f ⇤ � c0 (E � E⇤)2, (c0 > 0). (57)

This scenario is probably a reasonable approximation for many actual traits, which have
high fitness values in a certain range around their optimum value E⇤ [1, 4, 17]. For example,
it applies to the expression level of a gene: small changes in expression may be bu↵ered
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by compensatory changes in the regulatory network and will a↵ect fitness only weakly,
but larger changes are often deleterious, as is evident from the large number of genetic
disorders associated with gene copy number variation.

Stabilizing selection changes the distribution of trait values in a population, W (E),
which can be parametrized by changes in the trait mean � and the diversity �. Statistical
theory describes the expectation values of these changes in an ensemble of populations. At
a qualitative level, the main e↵ects are already clear from section 3: stabilizing selection
decreases the average squared distance from the fitness optimum, h⇤i2 ⌘ (h�i � E⇤)2,
the average equilibrium divergence between populations, h(�1 � �2)2i = 2h�̂2i, and the
average diversity, h�i. We now derive analytical expressions for these e↵ects in non-
recombining populations and under free recombination, and we analyze their dependence
on the selection strength c0 (the fitness maximum f ⇤ is an arbitrary constant, because
the evolution equation (35) depends only on fitness gradients); see also [1, 9, 17, 56, 57]
for e↵ect of stabilizing selection on free-recombining macroscopic traits. Compared to
a generic fitness landscape, the analysis is somewhat simplified for a quadratic fitness
landscape (57), because the mean population fitness separates,

F (�, �) = f ? � c0(� � E⇤)2 � c0�. (58)

For a quantitative analysis, it is useful to measure phenotypes in a natural unit, which
avoids the arbitrariness of fixed units (such as centimeters or inches for body height). Here
we express trait values in units based on the e↵ect amplitude (24),

e ⌘ E

E0
, � ⌘ �

E0
, � ⌘ �

E2
0

, (59)

and in the same way e⇤ ⌘ E⇤/E0, � ⌘ ⇤/E0 and �̂ ⌘ �̂/E0. These scaled values are pure
numbers (we distinguish them by use of lower case letters from the raw data). The scaling
(59) has a straightforward biological interpretation: E2

0 is the trait variance in an ensemble
of random genotypes, which would result from neutral evolution in the weak-mutation
regime,

E2
0 = lim

µ!0
h(� � h�i)2i0. (60)

We also use the e↵ect amplitude to define the scaled strength of stabilizing selection,

c ⌘ 2NE2
0 c0, (61)

which can be interpreted as the di↵erence between the fitness maximum f ⇤ and the average
fitness in the random ensemble,

c = 2Nf ⇤ � lim
µ!0

h2Nf̄ i0, (62)

where fitness (growth rate) is measured per 2N generations and we have assumed that
selection does not shift the trait average (i.e., E? = h�i0). Such fitness di↵erences are
referred to as genetic load, which is discussed in section 5.1.
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4.1. Trait average under stabilizing selection

In a quadratic fitness landscape, the equilibrium distribution of the trait mean is Gaussian
for su�ciently large values of `,

Qeq(�) =
1

Z�
Q̃0(�) exp[2Nf(�)] =

1

Z�
exp


2✓

h�i (� � �0)
2 � c(� � e⇤)2

�
(63)

with �0 =
P

`

i=1ei

/2, as given by equations (47)–(49) and Z� as the appropriate
normalization factor. This distribution has the scaled moments

h�i2 ⌘ (h�i � e⇤)2 = h�i2
0

1

(1 + ch�i/2✓)2
,

h�̂2i ⌘ h�2i � h�i2 = h�̂2i0
h�i

h�i0

1

(1 + ch�i/2✓)
(64)

with h�i0 = �0 � e⇤ and h�̂2i0 = 1 � 4✓ + O(✓2). In the regime of weak selection (c ⌧ 1),
these moments depend on the selection strength c in a universal way,

h�i2 = h�i2
0 (1 � 4c) + O(c2, c/`, c✓),

h�̂2i = h�̂2i0 (1 � 2c) + O(c2, c/`, c✓),
(65)

because the e↵ect of selection on the trait diversity is subleading (h�i/h�i0 = 1+O(c/`, c✓),
see equation (72) below). For larger values of c, these moments acquire a noticeable
dependence on h�i, and thereby on the recombination rate. For asexual populations, we
obtain the strong-selection regime (c✓ � 1)

h�i2 = h�i2
0

✓

c
[1 + O(✓1/2c�1/2)],

h�̂2i =
1

2c
[1 + O(✓, c�1/2)] (no recombination),

(66)

where we have used equation (68) below. Evaluating this regime does not make sense in the
free-recombination approximation, because if epistatic selection is strong, the assumption
of linkage equilibrium breaks down for any finite recombination rate.

4.2. Trait diversity under stabilizing selection

The equilibrium distribution of the trait diversity is

Qeq(�) =
1

Z�
Q0(�) exp(�2Nc0�) (67)

with Q0(�) given by (53) and (55) and Z� as the appropriate normalization constant.
This distribution does not depend on the statistics of the trait mean and determines the
scaled average diversity in asexual populations by

h�i =
1

Z
�

Z
��2�4✓ exp

✓
� 4✓

�
� c�

◆
d�

=

r
4✓

c

k1+4✓

[4
p

✓c]

k2+4✓

[4
p

✓c]

⌘ h�i0 [1 + G(✓c)] (no recombination), (68)
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where k
n

(z) denotes the modified Bessel function of the second kind. The average diversity
of free-recombining traits reads (see also [17])

h�i =
`X

i=1

e2
i

Z
�i

Z
e

2/4
i

0

(�
i

/e2
i

)2✓

p
1 � 4(�

i

/e2
i

)
exp(�c�

i

) d�
i

=
✓

2

`X

i=1

e2
i

F1[1 + 2✓, 3/2 + 2✓, �c e2
i

/4]

F1[2✓, 1/2 + 2✓, �c e2
i

/4]

=
✓

2

Z
d✏ (✏)✏2 F1[1 + 2✓, 3/2 + 2✓, �(c/`) ✏2/4]

F1[2✓, 1/2 + 2✓, �(c/`) ✏2/4]

⌘ h�i0

h
1 + Gfree

⇣c

`
, 
⌘i

(free recombination), (69)

where F1[a, b, z] is the regularized confluent hypergeometric function and we have
introduced the e↵ect density

(✏) ⌘ 1

`

`X

i=1

�(✏ � `1/2e
i

). (70)

We can again expand these expressions to leading order in c,

h�i = h�i0 [1 � 4✓c + O(✓2c2)] (no recombination), (71)

h�i = h�i0


1 � 24

32
2

c

`
+ O

✓
c2

`2
,
c✓

`

◆�
(free recombination), (72)

where 
n

denotes the nth moment of the distribution (✏) (n = 1, 2, . . .). For asexual
populations, we obtain the strong-selection regime (c✓ � 1)

h�i = h�i0


1

(4✓c)1/2
+ O

✓
1

✓c

◆�
(no recombination). (73)

Again, evaluating this regime does not make sense in the free-recombination
approximation, because approximate linkage equilibrium cannot be maintained at any
finite recombination rate. For c/` � 1, selection changes even qualitatively: it becomes
balancing at individual trait loci and would act to increase the trait diversity.

Our analytical results (64), (68) and (69) for trait equilibria under stabilizing selection
are shown in figure 4 together with numerical simulations. As expected, the behavior of
the trait diversity depends more strongly on the recombination rate than that of the trait
mean. However, there is an important and universal feature: stabilizing selection a↵ects
the trait diversity always less than its mean. This feature, which will be the basis for a test
of stabilizing selection on quantitative traits, is explicitly demonstrated by our solution.
As shown by equations (68) and (69), selection on trait diversity has an e↵ective strength

✓c ⌧ c (no recombination), (74)

c/` ⌧ c (free recombination), (75)

which involves a small prefactor compared to the selection strength c acting on divergence.
These prefactors reflect di↵erent mechanisms of stabilizing selection acting on trait
diversity. In asexual populations, selection acts on a distribution of genotypes, which
generates a neutral trait diversity by a factor ✓ smaller than the neutral trait divergence.
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Figure 4. Trait moments under stabilizing selection. (a) The squared average
distance of the trait mean from the fitness optimum, h�i2, (b) the variance
of the trait mean, h�̂2i, which equals half the average equilibrium divergence,
and (c) the average diversity h�i are plotted against the selection strength c
(green, no recombination; blue, free recombination). Other system parameters
are as in figure 3. All quantities are scaled by the e↵ect amplitude E0. In both
recombination regimes, the e↵ect of stabilizing selection on the trait diversity is
seen to be smaller than on the trait mean.

In sexual populations, selection acts on individual trait loci, and the mean square trait
amplitude of an individual locus by a factor of order (1/`) smaller than the mean square
amplitude E2

0 of the entire trait.

5. Fitness and entropy under stabilizing selection

The distributions of trait mean and diversity derived in section 4 also determine the fitness
and entropy statistics in the equilibrium population ensemble. This statistics provides a
few biologically relevant numbers: it quantifies how well adapted typical populations are
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under stabilizing selection, how much adaptation has occurred between neutrality and the
adapted state, and how much measurements in one population can predict about another
population evolving in the same fitness landscape.

5.1. Genetic load

How far away is a population from the fitness peak? This question is answered by the
genetic load

L ⌘ f ⇤ � f̄ , (76)

which is defined as the di↵erence between the fitness maximum and the mean population
fitness (and is conveniently measured in units of 1/2N) [13, 14, 26, 37]. In the quadratic
fitness landscape (57), we can decompose L into a component associated with the trait
mean, 2NL� ⌘ c(� �e⇤)2, which is generated mainly by substitutions away from the fitness
optimum, and the diversity load, 2NL� ⌘ c�, which is generated by trait polymorphisms.
Our statistical theory predicts the ensemble average of the genetic load at equilibrium,

h2NLi = c(h�i2 + h�̂2i + h�i), (77)

in terms of the leading moments of trait mean and diversity, which are given by
equations (64), (68) and (69). Figure 5(a) shows that the total load and its two components
depend on the strength of selection in a non-monotonic way. For weak selection, the main
load component is h2NL�i, but h2NL�i dominates for strong selection. This reflects our
result that stabilizing selection a↵ects the trait diversity less than its mean.

5.2. Free fitness and fitness flux

How far away is a population ensemble from neutral evolution? This can be measured
in two ways: by the di↵erence in average scaled fitness between that ensemble and the
neutral ensemble

h2Nf̄ i
Q

� h2Nf̄ i0 = h2NLi0 � h2NLi
Q

, (78)

and by the relative entropy or Kullback–Leibler distance between the ensemble under
selection and the neutral ensemble,

H(Q|Q0) ⌘
Z

d�d�Q(�, �) log


Q(�, �)

Q0(�, �)

�
. (79)

The di↵erence between scaled fitness and relative entropy is called free fitness,

F (Q) ⌘ h2Nf̄ i
Q

� H(Q|Q0); (80)

see [3, 7, 29, 41, 49]. This quantity is of particular importance, because it satisfies a growth
principle similar to Boltzmann’s H-theorem in statistical physics: for any evolutionary
process in a time-independent fitness landscape which has an equilibrium, the free fitness
F (Q(t)) increases monotonically with time and has its maximum at equilibrium [29, 41,
49]. Here we approximate the stationary trait distribution under stabilizing selection by
the product of its equilibrium marginal distributions, Qstat(�, �) ⇡ Qeq(�)Qeq(�) ⌘ Qeq;
the same approximation is used for the neutral distribution Q0(�, �) (the results in the
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Figure 5. Genetic load, fitness flux, and predictability of evolution. (a) The
average genetic load hLi (full lines) with its components hL�i (dotted lines) and
hL�i (dashed lines), (b) the equilibrium fitness flux �eq with its components
�eq,� (dotted lines) and �eq,� (dashed lines), and (c) the predictability P
are plotted against the selection strength c (green, no recombination; blue,
free recombination; fitness is measured in units of 1/2N). See definitions in
equations (77), (82) and (85). Other system parameters are as in figure 3.

appendix show that this is numerically justified). We then obtain the relative entropy

H(Qeq|Q0) = �c(h�i2 + h�̂2i) � log Z� � ch�i � log Z� (81)

and the di↵erence in free fitness or fitness flux

2N�eq ⌘ F (Qeq) � F (Q0)

= �c(h�i2 + h�̂2i + h�i) � H(Qeq|Q0) + c(h�i2
0 + h�̂2i0 + h�i0)

= c(h�i2
0 + h�̂2i0) + log Z� + ch�i0 + log Z�, (82)

with log Z� ' h�i2
0(✓ � (✓c)1/2) � (1/2) log c and log Z� ' �4(✓c)1/2 + (3/4) log c. The

scaled fitness flux 2N�eq measures the total amount of adaptation between the neutral
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equilibrium and the equilibrium under stabilizing selection5 [41]. As shown in figure 5(b),
this flux is always positive and increases with the selection strength c. Similarly to the
genetic load, it can be decomposed into contributions of the trait mean and the trait
diversity, 2N� = 2N�eq,� + 2N�eq,�. The term 2N�eq,� = c(h�i2

0 + h�̂2i0) + log Z� is the
dominant contribution, again because stabilizing selection a↵ects the trait diversity less
than its mean.

5.3. Predictability of evolution

How informative are trait measurements in one population about the distribution of
trait values in a replicate population evolving in the same fitness landscape? To answer
this question, we compare the ensemble-averaged Shannon entropy of the phenotype
distribution within a population,

hSiW ⌘
Z

W
S(W )Q(W ) (83)

and the Shannon entropy of the ‘mixed’ distribution

S(hW i) ⌘ S

✓Z

W
W Q(W )

◆
, (84)

which is obtained by compounding the trait values of all populations into a single
distribution. We define the phenotypic predictability

P ⌘ exp[hSiW � S(hW i)] (85)

with S(W ) ⌘ � R W (E) log W (E) dE. This quantity measures how much of the total trait
value repertoire of all populations is already contained in the trait distribution W (E) of a
single distribution. It is closely related to the expected overlap between the distributions
W1(E) and W2(E) of two replicate populations.

To compute the predictability under stabilizing selection, we approximate the
ensemble average in (83) and (84) by an average over �, using the approximate
parametrization W (E|�) ⇠ exp[�(E � �)2/2h�i]. We obtain

P '
 

h�i
h�̂2i + h�i

!1/2

=

✓
1

1 + ⌦/4✓

◆1/2

(86)

with the dimensionless ratio

⌦ ⌘ h�̂2i/h�̂2i0

h�i/h�i0
=

(
[1 + 2c (1 + G(✓c))]�1 (no recombination),

[1 + 2c (1 + Gfree(c/`, ))]�1 (free recombination)
(87)

given by equations (64), (68) and (69). The dependence of P on the strength of stabilizing
selection is shown in figure 5(c). While the neutral predictability P0 = 4✓/(1 + 4✓) is
small, stabilizing selection can generate predictability values P of order unity. The reason
is again because the trait mean is more constrained than the trait diversity. This feature
is illustrated in figure 1: under selection, a single-population distribution W (E) fills a

5 Fitness flux plays a central role as a measure of adaptation also in non-equilibrium processes, where it is no
longer related to free energy changes [41].
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larger fraction of the trait range spanned by the cross-population distribution Q(�) than
at neutrality.

It is instructive to compare the phenotypic predictability (85) with the analogous
measure for genotypes,

Pg ⌘ exp[hSi
x

� S(hxi)]

= exp

"
X

a

(hxa log xai � hxai loghxai)
#

. (88)

For complex traits (i.e., for large values of `), we find the genotypic predictability

Pg ' exp
⇥�` [&(c) � O(✓, `�1)]

⇤
. (89)

The leading entropy density &(c) is given by

&(c) '
8
<

:

log 2 for c ⌧ 1,

↵ E⇤/` �
Z

d✏ (✏) log(1 + e↵✏) for c � 1,
(90)

where (✏) is the single-locus e↵ect distribution defined in equation (70). The constant ↵
is implicitly determined by the condition

Z
d✏ (✏)

✏ e↵✏

1 + e↵✏

=
E⇤

`
. (91)

To derive this result, we note that &(c) is determined by the entropy of the ‘mixed’
distribution, S(hxi), which can be evaluated in the low-mutation limit ✓ ! 0. Hence, &(c) is
also independent of recombination, which a↵ects the overlap statistics between genotypes
within a population [50] and only enters the ✓-dependent corrections. Asymptotically for
✓ ⌧ 1 and c ⌧ 1, the mixed entropy reduces to the logarithm of the number of sequence
states at the constitutive sites, S(hxi) ' ` log 2. In the strong-selection regime, we can
compute this entropy using the canonical formalism of statistical mechanics. We evaluate
the partition function under linear selection on the trait,

Zg =
`Y

i=1

X

�i=0,1

e↵Ei�i =
`Y

i=1

�
1 + e↵Ei

�
(92)

with the strength parameter ↵ chosen to maintain the trait average at the fitness optimum,

hEi =
@

@↵
log Zg =

`X

i=1

E
i

e↵Ei

1 + e↵Ei
= E⇤. (93)

The canonical entropy is then given by S = ↵hEi � log Zg = ↵E⇤ � log Zg, which leads to
the entropy density (90).

We conclude that the genotypic predictability is always small for complex traits,
because an extensive number of genotypes remains compatible even with a strongly
constrained trait value. Only after the projection from genotype to phenotype, selection
can generate predictability.
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6. Inference of stabilizing selection

Our results suggest a method to infer selection on a quantitative trait. The method is based
on trait measurements within and across populations, but it does not require knowledge
of the trait’s genomic basis. Specifically, the ratio

⌦ = 4✓
h(� � h�i)2i

h�i = 2✓
h(�1 � �2)2i

h�i (94)

depends only on phenotypic observables: it can be evaluated from the average trait
diversity within populations, h�i, and the variance of the trait mean across populations,
h(� � h�i)2i, at evolutionary equilibrium (we assume the neutral sequence diversity ✓ to be
known independently). The ensemble variance h(� � h�i)2i is just half of the equilibrium
divergence, h(�1 � �2)2i, which, in turn, is close to the divergence between evolutionarily
related populations, h(�(t1) � �(t2))2i, provided their divergence time is larger than the
relaxation time of the trait to equilibrium. This is a reasonable approximation for traits
under substantial selection, and our model can be extended to divergence data between
closely related populations [28].

Our theory provides an analytical expression for ⌦, which is given by equation (87).
It shows that ⌦ is a monotonically decreasing function of the strength of selection, c.
This dependence can be used to infer c, which is defined as the fitness drop per 2N
generations at a distance of one neutral standard deviation from the trait optimum. Both
⌦ and c are pure numbers, which are independent of the units of trait and fitness. As
shown by equation (87), our phenotype-based method is formally similar to the well
known McDonald–Kreitman test, which evaluates divergence and diversity of genomic
sequences [36]. However, the McDonald–Kreitman test has a di↵erent scope, which is to
infer positive selection.

The ⌦ test exploits a universal characteristic of stabilizing selection: it a↵ects the
trait diversity less than its mean. This characteristic is quite intuitive from figure 1, which
suggests that selection acts on divergence and on diversity with di↵erent characteristic
strengths. The strength is given by the curvature of the fitness landscape, c0, multiplied by
a relevant squared trait scale at neutrality. The basic such scale is the neutral expectation
value of the trait divergence, h�̂2i0 ⇡ E2

0 . The trait scales within a population are di↵erent:
without recombination, selection acts on genotypes, and the relevant scale is the total trait
diversity, ✓E2

0 . With strong recombination, selection acts on individual trait loci, and the
relevant scale is the squared trait amplitude of one such locus, which is of order E2

0/`.
Both within-population scales are small against the divergence scale E2

0 .
Most importantly, the inference of selection is confounded neither by number ` and

e↵ect distribution  of the trait’s constituent sites, nor by recombination between these
sites. All of these genetic factors a↵ect ⌦ only through the term G in equation (87), which is
small in the relevant range of ✓ (at most per cent) and ` (at least tens of sites). As a result,
⌦ depends on the strength of selection in a nearly universal way. Numerical simulations
of populations with di↵erent site numbers, e↵ect distributions, and recombination rates
confirm this behavior, as shown in figure 6.
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Figure 6. Inference of stabilizing selection. The phenotypic observable ⌦
measures the ratio between divergence and diversity of a quantitative trait, as
given by equation (94). This ratio is plotted against the strength of stabilizing
selection, c, for populations with di↵erent numbers (`) and e↵ect distributions ()
of the trait’s constituent sites, and with di↵erent recombination rates. (a) Data for
non-recombining populations with ` = 20, 100, 200 (dark to light green symbols)
and two di↵erent e↵ect distributions: delta distribution (all sites have equal
e↵ect, circles), exponential distribution (squares). Other system parameters as in
figure 3. These data are in good agreement with the universal theoretical behavior
⌦(c) (solid line) given by equation (87). Data points are shown within the range
of applicability of the theory, c/` < 1 (for larger values of c, selection becomes
balancing for individual loci). (b) Data for populations with free recombination for
the same values of ` (dark to light blue symbols) and the same e↵ect distributions.
These data are in good agreement with the theoretical behavior ⌦(c) (lines) given
by equation (87), which contains a small dependence on ` (dark to blue lines) and
on the e↵ect distribution (solid lines, delta; dashed lines, exponential). (c) Data
for populations with di↵erent recombination rates ⇢ = 0.001, 0.01, 0.1, 0.5, 1
(blue to green circles), evaluated for ` = 100 and exponential e↵ect distribution.
These data interpolate between the theoretical predictions without recombination
(green line) and with free recombination (blue line). Together, this shows the
nearly universal dependence of the divergence–diversity ratio on the strength of
stabilizing selection.

7. Discussion

In this paper, we have developed a statistical model for the evolution of complex
molecular traits. We have shown that the dynamics of such traits can be described
by approximate Kimura di↵usion equations. In an arbitrary fitness landscape, this
dynamics leads to coupled evolutionary equilibria for trait mean and diversity. Unlike the
standard low-mutation or high-recombination approximations, our model is applicable
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to correlated multi-site processes, which evolve large linkage disequilibria between the
trait’s constitutive sites. Such processes govern the evolution of complex traits in asexual
populations; in sexual populations, they are relevant for mesoscopic traits, which are
polymorphic and based on a genomic region with limited recombination. Our model is a
starting point for the analysis of such traits beyond the infinite-recombination assumption
of quantitative genetics. It can and should be extended in a number of directions, which
include the crossover from genotype selection to allele selection for finite recombination
rates [50], traits with a nonlinear dependence on genotype, more rugged fitness landscapes,
and time-dependent fitness ‘seascapes’ driving adaptive trait evolution [40].

Our model leads to a new, quantitative test for stabilizing selection on quantitative
traits, which is based on the ratio between trait divergence and trait diversity at
equilibrium. We have shown that this ratio measures the strength of stabilizing selection in
a nearly universal way, independently of the trait’s genomic basis and of the recombination
rate. This test can also be extended to quantitative traits in a time-dependent fitness
seascape, which will be the subject of a forthcoming companion paper [28].

Complex phenotypes integrate the information of multiple genomic sites. Compared to
their constitutive genotypes, they represent biological functions on a larger scale. Both at
the genomic and at the phenotypic level, we can ask about the predictability of evolution:
how informative is sequencing or trait measurements in one population about the same
quantities in a di↵erent population that evolves in the same fitness landscape? As we have
shown in section 5.3, this question can be made precise by defining predictability in terms
of an entropy di↵erence between intra- and cross-population distributions of genotypes
or trait values. For complex traits, predictability turns out to depend on scale and on
selection. There is little predictability at the genome level, because the total number
of genotypes encoding a functional trait is vastly larger than that realized in any one
population. The equilibrium predictability is exponentially small in the number of trait
sites, and populations evolving from a common ancestor will diverge through mutations
at di↵erent sites. At the phenotypic level, the equilibrium predictability is related to the
divergence–diversity ratio ⌦, as given by equation (86). It is small at neutrality, but under
su�ciently strong stabilizing selection it can reach values of order one. Hence, stabilizing
selection generates predictability of evolution at the phenotypic level.
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Appendix. Non-equilibrium ensembles of quantitative traits

Here we analyze the evolution equation (35) for the joint distribution Q(�, �, t) of trait
mean and variance in asexual populations. We consider the case of stabilizing selection in
the fitness landscape F (�, �) given by equation (58). Using the scaled trait variables
�̂ = (� � �0)/E0, � = �/E2

0 and � = (� � E?)/E0 and the scaled selection strength
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c = 2NE2
0c0 defined in equations (59) and (61), this equation can be written in the form

2N
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2�2 + 8✓(� � 1) + 2� + 2c�2
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Q(�̂, �, t)

=
@

@�̂
Ĵ�(�̂, �, t) +

@

@�
Ĵ�(�̂, �, t), (A.1)

where (Ĵ�, Ĵ�) denotes the probability current in the �–� plane. The scaled distribution
and current are related to their unscaled counterparts,

Q(�, �; c0, E0) = E�3/2
0 Q̂(�̂, �; c), (A.2)

J�(�, �; c0, E0) = E�1
0 Ĵ�(�̂, �; c), J�(�, �; c0, E0) = E�1/2

0 Ĵ�(�̂, �; c). (A.3)

If we keep the trait e↵ect distribution (✏) of individual constituent sites fixed, the squared
overall trait scale is proportional to their number, E2

0 = 2`/4. Hence, we can interpret the
relations (A.2) and (A.3) as scale transformations relating systems with di↵erent values
of `.

The joint dynamics of � and � does not have an equilibrium solution, because the
mutation coe�cient field (4✓�̂, 8✓(� � 1) + 2�) is non-integrable. As shown by numerical
simulations, this dynamics leads instead to a non-equilibrium stationary distribution
Q̂stat(�̂, �) (shown in figure 2), which has with a finite current (Ĵ�, Ĵ�)(�̂, �). According to
equations (A.2) and (A.3), we obtain a scale-invariant stationary non-equilibrium state6

describing a family of systems with di↵erent ` and constant scaled selection strength c. In
this family of systems, a finite stationary current persists for large values of `.

To test this prediction, we measure the current by binning changes of � and �
through discretized grid lines in our simulation. At each junction in the grid, we record
positive and negative changes separately. These changes determine the current components
J�(�, �) = J�

+(�, �) � J�
�(�, �) and J�(�, �) = J�

+ (�, �) � J�
� (�, �), and we obtain

dimensionless measures for the violation of detailed balance,

J
�

(�) ⌘ J�
+ (�) � J�

� (�)

J�
+ (�) + J�

� (�)
, J

�

(�) ⌘ J�
+(�) � J�

�(�)

J�
+(�) + J�

�(�)
, (A.4)

which are obtained from the integrated currents J�
± (�) ⌘ R

J�
± (�, �) d� and J�

±(�) ⌘R
J�

±(�, �) d� (these measures are less noisy than their local counterparts). In
figure A.1(a), we show the ratios (A.4) for systems with di↵erent values of ` (at a fixed
value of c). As predicted by the scale transformation (A.3), these data collapse onto unique
functions J

�

(�) and J
�

(�). They reveal a closed stationary current with a clockwise loop
for �̂ > 0 and a symmetrical, counterclockwise loop for �̂ < 0.

The breakdown of detailed balance in the stationary state has an important
consequence: the distribution Qstat(�, �) under selection is no longer of Boltzmann form.

6 The scale-invariant state (A.2) and (A.3) of asexual neutral evolution (c = 0) can be broken by two relevant
perturbations: recombination (which changes the scaling of diversity fluctuations from � ⇠ ` to �̂ ⇠ `1/2) and
stabilizing selection of constant unscaled strength c0 (which generates a trait autocorrelation hCi < 0).
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Figure A.1. Deviations from equilibrium under complete genetic linkage. (a)
Current ratios J

�

(�) (left panel) and J
�

(�) (right panel), as defined in
equation (A.4). (b) Deviations R̂(�̂) = E0R(�) (left panel) and R̂(�) = E2

0R(�)
(right panel) of the stationary distribution from the Boltzmann form, as defined
in equation (A.5). These data are shown for systems with ` = 100, 120, . . . , 200
constitutive sites of equal e↵ect. They collapse into unique functions, indicating a
scale-invariant non-equilibrium state with stationary current; see equations (A.2)
and (A.3). The fitness optimum is set to E? = �0 = `/2. Other system parameters
are as in figure 3.

The deviations are measured by the function

R(�, �) ⌘ Qstat(�, �) � 1

Z
Q0(�, �) exp[2NF (�, �)]. (A.5)

Figure A.1(b) shows the marginal di↵erences R(�) ⌘ R
R(�, �) d� and R(�) ⌘R

R(�, �) d� for systems with di↵erent values of ` (at a fixed value of c). After rescaling
according to equation (A.2), these data again collapse onto a single function R̂(�̂, �). The
actual stationary distribution Qstat(�, �) is seen to be broader than the corresponding
Boltzmann distribution.
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