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Overall goals

e To give you an overview of the subject: what it is all about.
To consider several real-world examples and instructive
case-studies

¢ To introduce you to the array of mathematical approaches
used to study biological invasions

e Starting from simple examples and basic modeling tools, to
bring you to the frontiers in this field
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Outline of the course

¢ Introduction & a glance at field data

o Overview of mathematical tools

Diffusion-reaction systems

» Single-species system: traveling waves, the problem of
critical domain, effects of environmental heterogeneity

» Predator-prey system and the problem of biological control:
traveling waves and pattern formation

» Beyond the traveling waves: patchy invasion

Lattice models

Kernel-based models (integro-difference equations):
fat-tailed kernels, “superspread”, pattern formation

Extensions, discussion, conclusions
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Introduction and examples



General

Biological invasion begins when a new, “alien” or exotic species
is brought into a given ecosystem.

Ecology is a science that studies species living in their natural
environment. It focuses on the species interaction between
themselves and with the abiotic factors. Ecology aims to
understand the principles and mechanisms of population’s
spatiotemporal organization and to identify factors that may
affect species abundance.

Mathematical ecology is application of the tools and techniques
of mathematics to ecological problems.



Why biological invasion?

The term biological invasion is a common name for a variety of
phenomena related to introduction and spatial spread of alien
or exotic species, i.e., species that have not been present in a
given ecosystem until they are brought in.

Consequences of species invasion:

1. A new species often becomes a pest and that can result in
huge economic losses. For instance, economic loss from the
invasion of insect pests in the USA for the period from 1906 to

1991 is estimated to be $ 92 billion (U.S. Office of Technology
Assessment, 1993).

2. Severe damage to biodiversity.



A glance at the data |: muskrat in Europe

® Breslau

300 km

(Skellam, 1951)
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A glance at the data Il: Japanese beetle in the USA

NY. CONN

MD.

VA,

(United States Bureau of Entomology and Plant Quarantine, 1941)



(Sakai et al., 2001)

Prevention

Eradication

Control/Restoration

Native Elsewhere

o Can invasiveness be predicted by life history
traits?

*  Are there genetic differences between invasive
and non-invasive populations of species?

o How do the genetic diversity and biology of
invasive soecies differ in their native vs. i

Survival in Transport

© Are there interactions with vectors that affect the
likelihood of invasion?

« What factors affect propagule pressure, and how
is propagule pressure related to the likelihood of
establishment?

P Establish in New Areas

* Is environmental tolerance greater in invasive
species?

* How does the recipient environment affect the
degree of invasiveness?

o Are particular life history stages better targets for
‘management of invasive species?

Lag Period

o Is the lag period explained by exponential
growth,  stochastic extinction of propagules, or
evolutionary change following colonization?

* Can models be used to better predict species that
may eventually undergo rapid spread?

Soread

How does dispersal mode or reproductive system
affect spread?

* What is the potential for rapid evolution?

«  Can knowledge of genetic structure of invasives
improve management?

* How does landscape structure influence spread?

Ecological Impact

*  What are the impacts of invasive species on
biodiversity and how can these be measured?

®  Are effects of invasives linear, or does invasive
meltdown occur?

©  What factors (c.g., propagule pressure, diversity)
determine the impact of the invasive species on
resident species and communities?

«  What are the economic impacts of invasive
species?

*  What traits of invasive or native species allow
prediction of the success of restoration efforts?
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The stage of geographical spread

Spread of the introduced species over space:

UA

v

( U is the population density )

Fisher, 1937: existence of the traveling population front

Kolmogorov, Petrovskii & Piskunov (KPP), 1937:
convergence of the initial condition to the traveling front
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Overview of mathematical tools



Overview of mathematical tools

» Individual-based or mean-field?

In the individual-based modelling (IBM), each individual is
described and modelled explicitly (e.g. as given by certain
rules):




Overview of mathematical tools

» Individual-based or mean-field?

In the mean-field approach, ecosystem’s state is described by
an array of its state variables:

Q={Ui(r,t), ..., Un(r,t), aq(r,t), ..., apy(r,t)}.

Typically, U; is the population density of the ith species, and
a1, ..., apy are ‘parameters’ (e.g. the growth rates).

Depending on the spatial scale, some of the components may
be better described as discrete.



Mathematical tools: nonspatial systems

How to account for different reproduction systems?

Time-continuous systems (overlapping generations):

dUi(t)
at

= f(Uy,....Up), i=1,....N.

where N is the number of species included into the model.

Time-discrete systems (non-overlapping generations):

Uit + T) = f(Ui(8),..., Un(t)), i=1,....N,

What are the values of N reasonable for modeling?



Ecological communities usually consist of many species linked
together into a complicated food web:

(Lake food web, from Pascual 2005)

Remarkably, however, many important insights can be made
based on simple few-species models.



Example 1: single-species system

Logistic growth Strong Allee effect

Growth Rate, F
Growth Rate, F

Population Density, u 4 Population Density, u

f(U) = aU(K — U) f(U) =~U(U - B)(K - U)



Example 2: predator-prey system

au(T) _
= PWU)-EWU,V),
av(T)

where U and V are prey and predator densities.
Prey growth rate P can be logistic or with the Allee effect.

Predation E can also have different properties, for instance:

uv LRY
urA O EUV=Am_—m

that is, Holling type Il and Holling type Ill, respectively.

E(U,V)=A




Predator-prey system can have complicated properties!

Predator Density

0 0.2 0.4 0.6 0.8 1
Prey Density



Deterministic or stochastic?

The impact of stochastisity can be described as a noise applied
to the ‘deterministic skeleton, for instance:
du(t)
Cdt
where U(t) is the population size and ¢ is a random variable.

= f(U) + £(HU .

How the system will behave?

60




A fundamental result (Central Limit Theorem):

the relative magnitude of the fluctuations decreases as the
number of individuals increases!

“Large scale random phenomena
in their collective action create
strict, non random regularity.”

(Gnedenko & Kolmogorov, 1954)

e Population dynamics is intrinsically stochastic, but that
does not necessarily mean that the model must be
stochastic.

¢ | will mostly focus on deterministic models



Mathematical tools: spatial systems

Time-discrete and space-continuous, IDEs:

Uix,t+ T) = /_OO K(x — )f(Us (&, 1), ..., Un(€, 1)) dE .

Time- and space-continuous, “diffusion-reaction” PDEs:

6U,-(r, t)
ot

= DVPU(r, 1) + Uy, ..., Un) .

Time- and space-discrete: Coupled Maps Lattices.



Dynamical systems’ approach to invasion

Native community before invasion:

auj(t)
at

= f(Uy,....Up), i=1,....N. (1)

As a result of invasion, a new species U, is added:

duj(t)
at

:fi(U‘la"'7UI77Un+1)) I:157N)(N+1) (2)

Invasion will be successful if the system (2) allows for the
existence of an attractor such as U, {(T) > 0, for instance, a
stable steady state:

(01, Uz, ceey Un, Dn+1) with Dn+1 >0.



Questions to be asked (and answered)

e How likely the new species will establish in the new
environment?

o Will it start spreading and, if yes, how soon after the
introduction? — How large can be the gap?

e What are the rate and pattern of spread?
e What are the mechanisms of spread?
e Can we control the rate of spread?

e Can we eradicate the invading species?



Chapter Il

PDE models of biological invasion:
Single-species system



How can we build a model?

What we need is to keep the balance of mass:

Change in the _( Local
population density )\ growth

) + Dispersal
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How can we build a model?

What we need is to keep the balance of mass:

( Change in the )

Local
population density

growth ) + Dispersal

Translate it to the mathematical language:

dU(X,T) 02U

Biological invasion is accounted for by finite initial conditions:

u(x,0) = ¢(x) >0 for x4 <x<x,

u(x,0) = 0 for x < x; and x> xo > Xxq.

The corresponding conditions at infinity: U(X — +oco, t) = 0.



Consider the evolution of the initial conditions.

Easy to do using computer simulations:

o
©

0.6

Population Density, U
o
=

o
N

1

40 60 80 100 120 140 160
Space, X



The solution eventually converges to a travelling front:

U A

v



Single-species model

QUX,T)  ~&PU
o1~ Poxe T 10,

where f(0) = f(K) =0and f(U) > 0for0 < U < K,

with corresponding conditions at infinity:

UX — —o0,t) =K, UX — o0, t) =0.



Single-species model

OUX,T) 02U
57— = D +(U), (4)

where f(0) = f(K) =0and f(U) > 0for0 < U < K,

with corresponding conditions at infinity:

UX — —o0,t) =K, UX — o0, t) =0.

Traveling wave solution — change of variables:
U(x,t)=¢(§) where &=x—ct

where c is the speed of the wave.

The shape of the front does not change with time!



Using the chain rule,

d_d & & d_ d
dx  d¢’ dx2  de2’ a  d¢’

the partial differential equation (4) turns into an ODE:

d?e(€) | de(§) _
D dez +c de + f(¢) =0,

where

€ ——0)=K,  ¢({—00)=0.

What is the direction of the front propagation:
invasion or retreat?



We multiply Eq. (5) by g—? and integrate it over the whole line:

* d?¢ (do < dp\? do
ood§2< §>d§+ /oo(d£> df*/_oof(@(df)dg 0
Note that

Oodqu do _1 o0 do
_mdgz<ds>d§—z/ 5<d5>

and

[e.e]

1 (do)*®
“2(a) |

/_Z f(9) <Z?> dé = /KO H(¢)do = — /OK H(6)d




We therefore obtain:

[ (5 e [t

00 d(b 2
[ (&) a0

Note that

Therefore,
c~ M, sign(c) = sign(M) .

Direction of front propagation is defined by the sign of M.
In case of logistic growth invasion is always successful: the

front propagates from the area where the species is abundant,
U = K, towards the area where the species is absent, U = 0.



However, in case of the strong Allee effect, it is not necessarily
So:

/

7

i L

M>0: invasion success, species spread

M<0: invasion failure, species retreat



What can we tell about the value of ¢c?

Consider the solution far in front of the front, i.e. where ¢ is
small; then,

f(¢) = ag
and Eqgn. (5) becomes linear:
p@Pe(E) | do()

de2 +cC de +ap =0,

and its general solution is known:
6(€) = CreM* + Coe’t,
where )\ > are the solutions of the characteristic equation:

DN +ch+a=0,



so that

A2

7 :;—D(—ci 02—4aD).

We are only interested in solutions that are nonnegative, which
means that the solution cannot oscillate around zero, which

means that \{ > cannot be complex.

Thus, we obtain ¢ — 4aD > 0, so that

C > Cmin = 2V aD. There are no slow waves!

It only works if « > 0, i.e. when there is no strong Allee effect!

The actual value of the speed depends on the initial condition.
For ecologically meaningful compact initial conditions, ¢ = cpjn.
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In case of the Allee effect, things are different.

For a general f(u), the wave speed is not known.

Consider a specific but meaningful case:
f(u) =~U(U = B)(K - U),
so that Eq. (5) for the traveling wave takes the form:

2
d2¢(¢) N Cd¢(f) 4 b — B)(K — ¢) = 0. (7)

b ag? d¢

If we look for a monotone front, then §2 = v/(¢),
where ¢ is a certain (unknown) function.



Consider the following ansatz:

% 1

dé = 4(9) = ad(é — K) ,
and substitute it into Eq. (7), taking into account that
do(e) _ d <d¢>> _do du(9) _ do du(9) _ du()
d¢? d¢ \ d¢ do  d¢ dg  do do

Equation (7) then turns into
Da?¢(¢ — K)(2¢ — K) + cad(¢ — K) +vo(¢ — B)(K — ¢) =
or, after obvious simplifications,

(2D&? — )¢ + (ca— KDa? +~3) = 0. (8)
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Equation (8) holds for any ¢, which is only possible if
2Da> —v=0 and ca— KD& +~3 =0,

from which we obtain a = \/~/(2D) and the speed:

c= (?)1/2(K— 20).

We therefore observe that ¢ > 0 (invasion) for § < %K,
but ¢ < 0 (retreat) for 8 > 1K.

Note that, since f(U) is a cubic polynomial, this is equivalent to
M > 0 and M < 0, respectively.



Note that, considering the ansatz as the ODE for ¢(¢),

we can easily obtain the exact solution of the problem:

B K
1+ Aexp (aK¢)

Ux — ct) = 6(€)

where A is an arbitrary constant depending on the initial
position of the front.

Thus, ansatz is a powerful method to find a special solution of
the problem.
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Single-species invasion — a brief summary

QUX,T)  &PU
o1~ ~ Paxz T1U)

Growth Rate, f
Growth R: f

Population Density, u # Population Density, u

Logistic growth Strong Allee effect



Single-species invasion — a brief summary

Spread of the introduced species over space:

UA

v

¢ = 2./DF(0) CN/K f(U)dU
0

Logistic growth Strong Allee effect



Single-species invasion in a 2D space

Population density

60
40

Space, y 0 o Space, x

100
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Example of historical data

In many cases, this simple model works very well.

Invasion of Japanese beetle in the United States:

MD.

PENN.

o

CONN.

1922
1921
1920

Radial Distance (km)

150

130

110

90:
70:
50:
30:

101

L L L L L
1915 1920 1925 1930 1935 1940 1945

Years

(Petrovskii & Shigesada, 2001)




Stage of species establishment

v

0 X

The species will only survive if its maximum density remains
above a certain critical threshold 3.



A Very Simple Model

oU(X, T)

92U

=D + al

oT T oXxz
(—oo< X <00, T>D0)

Growth Rate, f

Population Density, u

Growth Rate, f

Population Density, u

Solution of Eq. (9) therefore gives an upper bound for the
solution of the corresponding nonlinear equation.

(by virtue of the comparison principle)
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A Very Simple Model

Consider the following initial condition

G X2
ux.0) = 7o (g2

where G is the total initial population size, ¢ is the width and
Up = G(416%)~1/2 is the height of the distribution.

It is readily seen that the corresponding solution of the
linearized diffusion-reaction equation (9) is

2

G
Ux,T)= \/mexp <_4((52+DT) —l—aT) :

What are the properties of this solution?
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n ‘Ausuaq uoneindod

10

-10

Space, X



n ‘Ausuaq uoneindod



n < o N o o
n ‘Ausuaq uoneindod



Obviously, the solution has its maximum Up,(T) at X = 0:
Gexp(aT)

Vax(2+ DT)

which reaches its minimum at a certain T, > O:

Un(T) =

Therefore, all we need to do is to compare U, with the
extinction threshold 3.

It is readily seen that



Correspondingly, we obtain:

U. = Un(T.) for 6 <d.= b
U.=Uy for §>4,,

where

! 1 ad?

Equating U. = 3, we obtain the critical relation between the
height and width of the initial distribution!



Extinction-invasion diagram

Invasion

Height, U0

Extinction

I
0 1

Width, &

More realistic models gives the curve of the same shape.



A supercritical initial condition will develop into a traveling wave:

Population Density, U
o o o
B (2] [}
:

I
)

. . d ) . .
40 60 80 100 120 140 160
Space, X

For a subcritical initial condition, strictly speaking, extinction
only can happen in case of the strong Allee effect.

Theorem (Aronson): In case of logistic growth, any compact
positive initial condition will converge to the traveling wave.

In case of the logistic growth, the threshold is not the inherent
property of the model: cf. “practical stability concept”



Challenges

The situation is much less clear in the 2D case:

Space, Y

Space, X

The outcome of the species introduction can strongly depend
on the shape of the originally invaded area!



Heterogeneous environment

QUX,T) 92U
T - D(X)W + f(U X)7

i.e. parameters are now functions of the position in space.

Definition of the traveling wave now becomes less obvious,
such as a “non-stationary traveling wave,” U(X, T) = ¢(&, T).

Population distribution behind the front will become
heterogeneous, too:

02U

U(X,T)— UX) where D(X)

+f(U,X) =0.



Heterogeneous environment: a sketch

0.9 4




Heterogeneous environment: a sketch

Is there a possibility of wave blocking?
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Heterogeneous environment

Example I: Logistic growth

f(U,X) = a(X)U <1 - K(X)> .

No wave blocking is possible.

Example IlI: the strong Allee effect

f(U,X) = a(X)U (5 - U) (1 - KEJX)) .

Idea: wave blocking can occur if M(X) < 0 in front of the
traveling front



M<O

M>0

40.0

1.00 +

0.9 -
Q
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A single-hump heterogeneity
Consider K(X) = const and a(X) = ap[1 + ¥(X)],
f(U, X) = —ap[1 + 9(X)|U+ agU? — asU®
where ¢ (X) is positive only in a compact domain:

P(X)>0 for Xj< X< Xo,
P(X)=0 for X <Xy or X > X.

Heterogeneity leads to a backward shift A in the front position.

Theorem. Consider e = max+(X) < 1. Then A = £+ o(e)
where

K Xa
M:/ (U)dU and B= [ w(X)dX .
0 X,



A single-hump heterogeneity

u
12+
w, -
0.8 -
0.4
4
1 12 B\\s \6 \7
0 10.0 20.0 3000 400 X

What if the hump is not small, i.e. € ~ 1 or larger?



The stop-go diagram:

M<0

0.1 1 10 4

Domain 1 for wave propagation, Domain 2 for wave blocking
This property is used in practice (e.g. control of gypsy moth spread)
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Chapter IV

PDE models of biological invasion:
Multi-species system



Impact of other species

e This is a very big issue.
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predator-prey and host-pathogen.



Impact of other species

e This is a very big issue.

e Most of the complexity associated with biological invasions
results from the interspecific interactions.

(Even in a homogeneous environment: pattern formation!)

e Being motivated by the problem of biological control, we
will mostly focus on two-species systems such as
predator-prey and host-pathogen.

e Biological control is a strategy in invasive species
management when natural factors are used in order to
slow down or to block the species spread and/or to lead to
its eradication



Factors that may affect the pattern of spread

Heterogeneity of environment

Human-assisted dispersal (aka “stratified diffusion”)

Predation?

Impact of pathogens?

o ... 7



Factors that may affect the pattern of spread

Heterogeneity of environment

Human-assisted dispersal (aka “stratified diffusion”)

Predation?

Impact of pathogens?
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Mathematical model

A predator-prey / host-pathogen system:

81]((;_’7_) = DyV2UR, T) + f(L)U - r(U)V,
V(R T)

57 = DV2V(R, T) 4 kr(U)V — MV



Mathematical model

A predator-prey / host-pathogen system:

aUgRT’T) = D;V2U(R, T) + f(U)U — r(U)V,
av(ar«;T) = D,V2V(R, T) + kr(U)V — MV
We consider

e Allee effect for prey/host: f(U) = a(U — Up)(K — U)
o r(U) = ng¥y in case of predation

e r(U) =nU in case of pathogens



Mathematical model (contd.)

In dimensionless variables:

oulr,t) o uv

5 = Veu(r,t) +~yu(u—p)1 —u) W
ov(r,t) 5

5 = €V v(r,t)+1+/\u—

For A = 0, these equations coincide with an SI model of a
host-pathogen system.



1D case

Analytical results

The generic pattern of species spread is considered to be the
traveling front

Question: can predation block or reverse the front?

Yes is the answer.

e < 1: Owen & Lewis (2001), singular perturbation analysis.

e = 1. Petrovskii et al. (2005), exact solution.



1D case (contd.)

However, the above analytical results were obtained in terms of
traveling waves. This is a strong assumption.

Can the pattern of spread be different from the traveling front?

Simulations. Consider the following initial conditions:
u(x,0)=uy for — A, <x <Ay, otherwise u(x,0)=0,
v(x,0)=v for — A, <x <A, , otherwise v(x,0)=0,

where ug, Vg are the initial population densities,
Ay and A, give the radius of the initially invaded domain.



1D case (contd.)
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1D case (contd.)

o
©

Population Density
o
o

O
~

0.2

1000

(Sherratt et al., 1995; Petrovskii & Malchow, 2000, 2002; Petrovskii et al., 2001)
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1D case (contd.)
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1D case (contd.)
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1D case (contd.)

Population Density
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Regimes of biological invasion in a predator-prey system

/

]
Regimes of extinction 7 N 9
Regimes of local
o invasion
1. Ordinary extinction
2. Dynamical localization
3. Patchy extinction
]
Regimes of geographical
spread
Travelling population Travelling Patchy spread
pulses population fronts
1. Stationary pulses
2. Oscillating pulses
Smooth population Population fronts with

fronts spatiotemporal patterns

(Petrovskii et al., 2005) in the wake
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2D case, simulations

The initial conditions:
u(x,y,0) = wup for x;1 <x < X2, y11 <y <Yz,
u(x,y,0) = 0 otherwise,

v(x,y,0) = vy for Xo1 <X <Xo2, Yo1 <y < VYoo,

v(x,y,0) = 0 otherwise.
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2D case (contd.) Chaos in the wake
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2D case (contd.) Spread without invasion
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2D case (contd.)
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2D case (contd.) Patchy invasion
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(Petrovskii et al., 2001)
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2D case (contd.) Patchy invasion
for symmetric initial conditions:
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for symmetric initial conditions:


Summary of simulation results
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(Jankovic & Petrovskii, 2013)

Growth rate of susceptible population,y



Invasion at the edge of extinction

Patchy invasion

Invasion through
propagation of
continuous
travelling fronts

Extinction

Predation
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Without space:

Predation/infection strength increases from left to right:

T
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°

Predator Density
Predator Density
°
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02

Prey Density Prey Density

Limit cycle disappears through a heteroclinic bifurcation
Patchy spread occur when the nonspatial system is not viable!

(Malchow, Petrovskii & Venturino, 2008)



Theory against data: gypsy moth in the USA

1977 1981

The red spots show heavily infested areas

(from the US Forest Service, www.fs.fed.us/ne/morgantown)

The calculated rate of spread is between 0.36 and 3.3 km/year
against the observed rate between 2 and 10 km/year

(Jankovic & Petrovskii, 2013)



The end of Part 1





