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Overall goals

• To give you an overview of the subject: what it is all about.
To consider several real-world examples and instructive
case-studies

• To introduce you to the array of mathematical approaches
used to study biological invasions

• Starting from simple examples and basic modeling tools, to
bring you to the frontiers in this field



Interdisciplinary Applied Mathematics 44

Mark A. Lewis
Sergei V. Petrovskii
Jonathan R. Potts

The Mathematics 
Behind 
Biological Invasions



Outline of the course

• Introduction & a glance at field data

• Overview of mathematical tools

• Diffusion-reaction systems
I Single-species system: traveling waves, the problem of

critical domain, effects of environmental heterogeneity
I Predator-prey system and the problem of biological control:

traveling waves and pattern formation
I Beyond the traveling waves: patchy invasion

• Lattice models

• Kernel-based models (integro-difference equations):
fat-tailed kernels, “superspread”, pattern formation

• Extensions, discussion, conclusions



Chapter I

Introduction and examples



General

Biological invasion begins when a new, “alien” or exotic species
is brought into a given ecosystem.

Ecology is a science that studies species living in their natural
environment. It focuses on the species interaction between
themselves and with the abiotic factors. Ecology aims to
understand the principles and mechanisms of population’s
spatiotemporal organization and to identify factors that may
affect species abundance.

Mathematical ecology is application of the tools and techniques
of mathematics to ecological problems.



Why biological invasion?

The term biological invasion is a common name for a variety of
phenomena related to introduction and spatial spread of alien
or exotic species, i.e., species that have not been present in a
given ecosystem until they are brought in.

Consequences of species invasion:

1. A new species often becomes a pest and that can result in
huge economic losses. For instance, economic loss from the
invasion of insect pests in the USA for the period from 1906 to
1991 is estimated to be $ 92 billion (U.S. Office of Technology
Assessment, 1993).

2. Severe damage to biodiversity.



A glance at the data I: muskrat in Europe

200 Random dispersal in theoretical populations 

2*5. Empirical confirmation. In practice there is rarely sufficient information to construct 
the contours of population density with accuracy. One contour, however, can sometimes 
be drawn-that for the low 'threshold' density (depending on the thoroughness of the survey) 
at which the population begins to escape notice altogether. 

Equation (4), derived initially on theoretical grounds, is well illustrated by the spread of 
the muskrat, Ondatra zibethica L., in central Europe since its introduction in 1905. Fig. 1, 
based on Ulbrich (1930), shows the apparent boundaries for certain years. If we are prepared 
to accept such a boundary as being representative of a theoretical contour, then we must 
regard the area enclosed by that boundary as an estimate of irr2. The relation between the 
time and Varea is shown graphically in Fig. 2. 

1910 1920 1930 

Fig. 1 Fig. 2 

2*6. The analogy with diffusion. If a random particle suffers a displacement e in any 
direction at regular intervals of time (t, t + w, t + 2o, ...), and if the probability density is 
denoted by 3fi, it is clear that 3f (x, y, t + w) is the mean value of 3b (y, , t) for all (g, ) on a circle 
of radius e around (x, y). That is, 

~r(x, y, t + ) =2 J of (x + e cos a, y + e sin a, t) dO. 

Expanding by Taylor's theorem and noting that 

f:cos dO = f sin 6 dO = f sin 0 cos 0 dO = 0, 

Lcos2Odo = : sin2Odo = 7T, 

we obtain for infinitesimally small e and wi the relation 

at 4 V2b (6) 

where V2 = la2+ a 
aX2 ~yV 

(Skellam, 1951)
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A glance at the data II: Japanese beetle in the USA

Ecological examples and applications 173

 

FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by

(United States Bureau of Entomology and Plant Quarantine, 1941)
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The stage of geographical spread

Spread of the introduced species over space:

Stages of biological invasion. 
 

 

(a) Introduction of an alien species: 

 

 

(b)  Establishment of the introduced species in the new 

environment:  

            U  

 ? 
 

 

 

             0                    x 
 

 

(c)  Spread of the introduced species over space, invasion 

of new areas:  

 

                           U 

 

 

 

 

                             0                                                       x 

 

where U is the population density. ( U is the population density )

Fisher, 1937: existence of the traveling population front

Kolmogorov, Petrovskii & Piskunov (KPP), 1937:
convergence of the initial condition to the traveling front



Chapter II

Overview of mathematical tools



Overview of mathematical tools

I Individual-based or mean-field?

In the individual-based modelling (IBM), each individual is
described and modelled explicitly (e.g. as given by certain
rules):

 



Overview of mathematical tools

I Individual-based or mean-field?

In the mean-field approach, ecosystem’s state is described by
an array of its state variables:

Ω = {U1(r, t), . . . , UN(r, t), α1(r, t), . . . , αM(r, t)} .

Typically, Ui is the population density of the i th species, and
α1, . . . , αM are ‘parameters’ (e.g. the growth rates).

Depending on the spatial scale, some of the components may
be better described as discrete.



Mathematical tools: nonspatial systems

How to account for different reproduction systems?

Time-continuous systems (overlapping generations):

dUi(t)
dt

= fi(U1, . . . ,Un), i = 1, . . . ,N .

where N is the number of species included into the model.

Time-discrete systems (non-overlapping generations):

Ui(t + T ) = fi(U1(t), . . . ,UN(t)), i = 1, . . . ,N ,

What are the values of N reasonable for modeling?



Ecological communities usually consist of many species linked
together into a complicated food web:

level [13,14]. Specifically, the temporal dynamics of global
population abundances, aggregated over the whole lattice,
can be approximated by mean-field-type equations in which
the functional forms specifying the rates of growth and
interaction have been modified as power functions. Similar
results hold for disease dynamics on spatial and social
networks ([15]; M. M. Maule and J. A. N. Filipe, unpublished
data; M. Roy and M. Pascual, unpublished data). The rates of
transmission of the original mean-field equation are
modified to account for deviations from mass action by
incorporating nonlinear mixing terms between susceptible
and infected populations in which global abundances are

raised to a power. Thus, the effect of interactions at local,
individual scales can be represented implicitly by changing
the shape of the functions describing interactions at global,
population levels; that is, the modified framework is
structured as if mass action applied when in fact it does not,
yet the subtleties of nonrandom mixing are captured at the
higher scale. The generality of these findings and the reasons
why power-law functional forms yield successful
approximations remain to be determined. Another approach
based on moment closure techniques has been applied to
simplify detailed models by incorporating the effects of
variances and covariances on the dynamics of mean (global)
quantities [5,11,16–18]; here again, the utility of this
approach when the details at small scales are not known
remains to be examined, as does the development of
statistical methods to fit the models when data are only
available for aggregated ‘‘mean’’ quantities.

From Physiology to Ecosystem Dynamics: Global
Change Ecology

The problem of incorporating sub-grid-scale processes into
large-scale models is found in many other scientific fields in
which nonlinearity allows variability to interact across spatial
or organizational scales. It also applies to other ecological
contexts, in particular to global change ecology and to the
spatiotemporal ecosystem models used to represent
feedbacks between the biota and the physical environment.
At large spatial and temporal scales, the question of essential
biological detail quickly becomes computationally
intractable. In a recent review on ecosystem–atmosphere
interactions, Moorcroft [3] emphasized the problem of
scaling from the level of plant physiology to ecosystem-level

DOI: 10.1371/journal.pcbi.0010018.g002

Figure 2. Bridging Dynamics across Organizational Scales

On the left is a detailed model in which individual interactions in a
network are described explicitly. On the right, typical ‘‘mean field’’
models aggregate the population into compartments (here for the
three subpopulations of susceptible, infected, and recovered individuals
in the dynamics of an infectious disease with permanent immunity).
Computational approaches can help us understand the relationship
between dynamics at these two different scales, from the individual to
the population level. We can start with a stochastic individual-based
model and develop approximations that simplify it (A). From this process,
we can learn about the opposite direction of formulating simple models
directly without sufficient knowledge to first specify the detailed
interactions and components (B). These simple models represent
implicitly the effect of smaller scale variability.

DOI: 10.1371/journal.pcbi.0010018.g001

Figure 1. The Network of Trophic Interactions for Little Rock Lake, Wisconsin

Figure shows 997 feedings links (lines) among 92 taxa (nodes) [2]. The node color indicates the trophic level of the taxon, including (from bottom
to top) algae, zooplankton, insects, and fishes; the link color corresponds to the type of feeding link, including herbivory and primary and secondary
carnivory. This image was produced using FoodWeb3D software written by R. J. Williams and provided by the Pacific Ecoinformatics and Computational
Ecology Lab (www.foodwebs.org).

PLoS Computational Biology | www.ploscompbiol.org July 2005 | Volume 1 | Issue 2 | e180102

(Lake food web, from Pascual 2005)

Remarkably, however, many important insights can be made
based on simple few-species models.



Example 1: single-species system

dU(T )

dT
= f (U)

Logistic growth Strong Allee effect
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f (U) = αU(K − U) f (U) = γU(U − β)(K − U)



Example 2: predator-prey system

dU(T )

dT
= P(U)− E(U,V ) ,

dV (T )

dT
= κE(U,V )− µ(V ) ,

where U and V are prey and predator densities.

Prey growth rate P can be logistic or with the Allee effect.

Predation E can also have different properties, for instance:

E(U,V ) = A
UV

U + H
or E(U,V ) = A

U2V
U2 + H2 ,

that is, Holling type II and Holling type III, respectively.



Predator-prey system can have complicated properties!
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Deterministic or stochastic?

The impact of stochastisity can be described as a noise applied
to the ‘deterministic skeleton,’ for instance:

dU(t)
dt

= f (U) + ξ(t)U .

where U(t) is the population size and ξ is a random variable.

How the system will behave?



A fundamental result (Central Limit Theorem):

the relative magnitude of the fluctuations decreases as the
number of individuals increases!

“Large scale random phenomena
in their collective action create
strict, non random regularity.”

(Gnedenko & Kolmogorov, 1954)

• Population dynamics is intrinsically stochastic, but that
does not necessarily mean that the model must be
stochastic.

• I will mostly focus on deterministic models



Mathematical tools: spatial systems

Time-discrete and space-continuous, IDEs:

Ui(x , t + T ) =

∫ ∞

−∞
K (x − ξ)fi(U1(ξ, t), . . . ,Un(ξ, t))dξ .

Time- and space-continuous, “diffusion-reaction” PDEs:

∂Ui(r, t)
∂t

= Di∇2Ui(r, t) + fi(U1, . . . ,Un) .

Time- and space-discrete: Coupled Maps Lattices.



Dynamical systems’ approach to invasion

Native community before invasion:

dUi(t)
dt

= fi(U1, . . . ,Un), i = 1, . . . ,N . (1)

As a result of invasion, a new species Un+1 is added:

dUi(t)
dt

= fi(U1, . . . ,Un,Un+1), i = 1, . . . ,N, (N + 1) . (2)

Invasion will be successful if the system (2) allows for the
existence of an attractor such as Un+1(T ) > 0, for instance, a
stable steady state:

(Ū1, Ū2, . . . , Ūn, Ūn+1) with Ūn+1 > 0 .



Questions to be asked (and answered)

• How likely the new species will establish in the new
environment?

• Will it start spreading and, if yes, how soon after the
introduction? – How large can be the gap?

• What are the rate and pattern of spread?

• What are the mechanisms of spread?

• Can we control the rate of spread?

• Can we eradicate the invading species?



Chapter III

PDE models of biological invasion:

Single-species system



How can we build a model?

What we need is to keep the balance of mass:(
Change in the

population density

)
=

(
Local
growth

)
+ Dispersal

Translate it to the mathematical language:

∂U(X ,T )

∂T
= f (U) + D

∂2U
∂X 2 ,

Biological invasion is accounted for by finite initial conditions:

u(x ,0) = Φ(x) ≥ 0 for x1 ≤ x ≤ x2,

u(x ,0) = 0 for x < x1 and x > x2 ≥ x1.

The corresponding conditions at infinity: U(X → ±∞, t) = 0.
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How can we build a model?
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Local
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Consider the evolution of the initial conditions.

Easy to do using computer simulations:
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The solution eventually converges to a travelling front:

Stages of biological invasion. 
 

 

(a) Introduction of an alien species: 

 

 

(b)  Establishment of the introduced species in the new 

environment:  

            U  
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(c)  Spread of the introduced species over space, invasion 

of new areas:  
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where U is the population density. 



Single-species model

∂U(X ,T )

∂T
= D

∂2U
∂X 2 + f (U), (3)

where f (0) = f (K ) = 0 and f (U) ≥ 0 for 0 < U < K ,

with corresponding conditions at infinity:

U(X → −∞, t) = K , U(X →∞, t) = 0.

Traveling wave solution – change of variables:

U(x , t) = φ(ξ) where ξ = x − ct

where c is the speed of the wave.

The shape of the front does not change with time!



Single-species model

∂U(X ,T )

∂T
= D

∂2U
∂X 2 + f (U), (4)

where f (0) = f (K ) = 0 and f (U) ≥ 0 for 0 < U < K ,

with corresponding conditions at infinity:

U(X → −∞, t) = K , U(X →∞, t) = 0.

Traveling wave solution – change of variables:

U(x , t) = φ(ξ) where ξ = x − ct

where c is the speed of the wave.

The shape of the front does not change with time!



Using the chain rule,

d
dx

=
d
dξ
,

d2

dx2 =
d2

dξ2 ,
d
dt

= −c
d
dξ
,

the partial differential equation (4) turns into an ODE:

D
d2φ(ξ)

dξ2 + c
dφ(ξ)

dξ
+ f (φ) = 0, (5)

where
φ(ξ → −∞) = K , φ(ξ →∞) = 0.

What is the direction of the front propagation:
invasion or retreat?



We multiply Eq. (5) by dφ
dξ and integrate it over the whole line:

D
∫ ∞

−∞

d2φ

dξ2

(
dφ
dξ

)
dξ+c

∫ ∞

−∞

(
dφ
dξ

)2

dξ+
∫ ∞

−∞
f (φ)

(
dφ
dξ

)
dξ = 0.

Note that∫ ∞

−∞

d2φ

dξ2

(
dφ
dξ

)
dξ =

1
2

∫ ∞

−∞

d
dξ

(
dφ
dξ

)2

=
1
2

(
dφ
dξ

)2
∣∣∣∣∣
∞

−∞

= 0,

and ∫ ∞

−∞
f (φ)

(
dφ
dξ

)
dξ =

∫ 0

K
f (φ)dφ = −

∫ K

0
f (φ)dφ .



We therefore obtain:

c
∫ ∞

−∞

(
dφ
dξ

)2

dξ =

∫ K

0
f (φ)dφ ≡ M.

Note that ∫ ∞

−∞

(
dφ
dξ

)2

dξ > 0.

Therefore,
c ∼ M, sign(c) = sign(M) .

Direction of front propagation is defined by the sign of M.

In case of logistic growth invasion is always successful: the
front propagates from the area where the species is abundant,
U = K , towards the area where the species is absent, U = 0.



However, in case of the strong Allee effect, it is not necessarily
so:

 

0 
 β K 

f 

U 

M>0: invasion success, species spread

M<0: invasion failure, species retreat



What can we tell about the value of c?

Consider the solution far in front of the front, i.e. where φ is
small; then,

f (φ) ≈ αφ

and Eqn. (5) becomes linear:

D
d2φ(ξ)

dξ2 + c
dφ(ξ)

dξ
+ αφ = 0, (6)

and its general solution is known:

φ(ξ) = C1eλ1ξ + C2eλ2ξ,

where λ1,2 are the solutions of the characteristic equation:

Dλ2 + cλ+ α = 0,



so that
λ1,2 =

1
2D

(
−c ±

√
c2 − 4αD

)
.

We are only interested in solutions that are nonnegative, which
means that the solution cannot oscillate around zero, which
means that λ1,2 cannot be complex.

Thus, we obtain c2 − 4αD ≥ 0, so that

c ≥ cmin = 2
√
αD.

It only works if α > 0, i.e. when there is no strong Allee effect!

The actual value of the speed depends on the initial condition.
For ecologically meaningful compact initial conditions, c = cmin.
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In case of the Allee effect, things are different.

For a general f (u), the wave speed is not known.

Consider a specific but meaningful case:

f (u) = γU(U − β)(K − U),

so that Eq. (5) for the traveling wave takes the form:

D
d2φ(ξ)

dξ2 + c
dφ(ξ)

dξ
+ γφ(φ− β)(K − φ) = 0. (7)

If we look for a monotone front, then dφ
dξ = ψ(φ),

where ψ is a certain (unknown) function.



Consider the following ansatz:

dφ
dξ

= ψ(φ) = aφ(φ− K ) ,

and substitute it into Eq. (7), taking into account that

d2φ(ξ)

dξ2 =
d
dξ

(
dφ
dξ

)
=

dφ
dφ

· dψ(φ)

dξ
=

dφ
dξ

· dψ(φ)

dφ
= ψ

dψ(φ)

dφ
.

Equation (7) then turns into

Da2φ(φ− K )(2φ− K ) + caφ(φ− K ) + γφ(φ− β)(K − φ) = 0,

or, after obvious simplifications,

(2Da2 − γ)φ+ (ca− KDa2 + γβ) = 0. (8)
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Equation (8) holds for any φ, which is only possible if

2Da2 − γ = 0 and ca− KDa2 + γβ = 0,

from which we obtain a =
√
γ/(2D) and the speed:

c =

(
Dγ
2

)1/2

(K − 2β).

We therefore observe that c > 0 (invasion) for β < 1
2K ,

but c < 0 (retreat) for β > 1
2K .

Note that, since f (U) is a cubic polynomial, this is equivalent to
M > 0 and M < 0, respectively.



Note that, considering the ansatz as the ODE for φ(ξ),

dφ
dξ

= aφ(φ− K ) ,

we can easily obtain the exact solution of the problem:

U(x − ct) = φ(ξ) =
K

1 + A exp (aK ξ)

where A is an arbitrary constant depending on the initial
position of the front.

Thus, ansatz is a powerful method to find a special solution of
the problem.





Single-species invasion – a brief summary

∂U(X ,T )

∂T
= D

∂2U
∂X 2 + f (U)
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Single-species invasion – a brief summary

Spread of the introduced species over space:

Stages of biological invasion. 
 

 

(a) Introduction of an alien species: 
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of new areas:  

 

                           U 

 

 

 

 

                             0                                                       x 

 

where U is the population density. 

c = 2
√

Df ′(0) c ∼
∫ K

0
f (U)dU

Logistic growth Strong Allee effect



Single-species invasion in a 2D space
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Example of historical data

In many cases, this simple model works very well.

Invasion of Japanese beetle in the United States:
Ecological examples and applications 173

 

FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by
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Stage of species establishment

  

            U  

 ? 
 

             β 

 

             0                    x 
 

 The species will only survive if its maximum density remains
above a certain critical threshold β.



A Very Simple Model

∂U(X ,T )

∂T
= D

∂2U
∂X 2 + αU (9)

(−∞ < X <∞, T > 0)
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Solution of Eq. (9) therefore gives an upper bound for the
solution of the corresponding nonlinear equation.
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A Very Simple Model

Consider the following initial condition

U(X ,0) =
G√
4πδ2

exp
(
− X 2

4δ2

)
,

where G is the total initial population size, δ is the width and
U0 = G(4πδ2)−1/2 is the height of the distribution.

It is readily seen that the corresponding solution of the
linearized diffusion-reaction equation (9) is

U(X ,T ) =
G√

4π(δ2 + DT )
exp

(
− X 2

4(δ2 + DT )
+αT

)
.

What are the properties of this solution?
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Obviously, the solution has its maximum Um(T ) at X = 0:

Um(T ) =
G exp(αT )√
4π(δ2 + DT )

,

which reaches its minimum at a certain T∗ ≥ 0:

U∗ = min
T

Um(T ) = Um(T∗) .

Therefore, all we need to do is to compare U∗ with the
extinction threshold β.

It is readily seen that

T∗ =
1

2α
− δ2

D
.



Correspondingly, we obtain:

U∗ = Um(T∗) for δ < δ∗ =

√
D
2α

,

U∗ = U0 for δ ≥ δ∗ ,

where

Um(T∗) = G
√

α

2πD
exp

(
1
2
− αδ2

D

)
.

Equating U∗ = β, we obtain the critical relation between the
height and width of the initial distribution!
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More realistic models gives the curve of the same shape.



A supercritical initial condition will develop into a traveling wave:
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For a subcritical initial condition, strictly speaking, extinction
only can happen in case of the strong Allee effect.

Theorem (Aronson): In case of logistic growth, any compact
positive initial condition will converge to the traveling wave.

In case of the logistic growth, the threshold is not the inherent
property of the model: cf. “practical stability concept”



Challenges

The situation is much less clear in the 2D case:

 

Space, X 

Sp
ac

e,
 Y

 

The outcome of the species introduction can strongly depend
on the shape of the originally invaded area!



Heterogeneous environment

∂U(X ,T )

∂T
= D(X )

∂2U
∂X 2 + f (U,X ),

i.e. parameters are now functions of the position in space.

Definition of the traveling wave now becomes less obvious,
such as a “non-stationary traveling wave,” U(X ,T ) = φ(ξ,T ).

Population distribution behind the front will become
heterogeneous, too:

U(X ,T ) → Ũ(X ) where D(X )
∂2Ũ
∂X 2 + f (Ũ,X ) = 0.
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Figure 3. Impact wave profiles calculated at equidistant moments t1 =
0 < t2 < · · · < t7 for the case of the impact wave localization (blocking)
in a random environment (in dimensionless units; D = 0.5, ξcorr =
5, τ0 = 1, ∆τ = 0.75, a = 5, b = 4). Thick line shows the large-time

stationary profile.

spatial distribution is induced by inhomogeneity of the en-
vironment.

Concerning real ocean and marine ecosystems, the case
of a solitary inhomogeneity is rather particular. The follow-
ing case of “random” inhomogeneity seems more realistic.
The model is as follows: in a number of points the val-
ues of parameter τ (where τ = 1/α is the mean life-time
for the animals of a given sort) are generated as random
numbers which are distributed according to a certain distri-
bution function, e.g., with equal probability in the interval
(τ0 − ∆τ/2, τ0 + ∆τ/2). The values of τ obtained in this
way are then smoothly connected with cubic polynomials.
The distance between these points, i.e., the effective size of
the inhomogeneities, may be considered as the correlation
length ξcorr for this given medium.

The impact wave propagation in such a medium is in-
vestigated numerically. Note that the case ξcorr � ∆fr is
somewhat more complicated due to interference of indi-
vidual inhomogeneities located within the distance ∆fr; we
do not touch it in this paper. Otherwise, if ξcorr � ∆fr

the results may be treated on the base of that for a soli-
tary inhomogeneity. The type of impact wave dynam-
ics in this case strongly depends on the value of dis-
persion ∆τ . If ∆τ is sufficiently large, so that M (τ0 −
∆τ/2) < 0 (supposing M (τ0) > 0), it means the ex-
istence of impassable regions in the system and the im-
pact wave is blocked by supercritical inhomogeneities.
Figure 3 shows the situation when the wave, having
overcome one obstacle (curves 3–5), stops at the other
one with larger amplitude (in dimensionless units, see
above; for parameter values D = 0.5, ξcorr = 5,
τ0 = 1, ∆τ = 0.95, a = 5, b = 4, u1 = 0.25, u2 = 1.0).

Figure 4. Formation of a patchy distribution of a population in an in-
homogeneous environment. The profiles are calculated (in dimensionless
units) for equidistant moments t1 = 0 < t2 < t3 < t4 for parameters
U0 = 0.3, D = 0.02 and ∆τ = 0.95 (other values are the same as in

figure 3). Thick line shows the large-time asymptotics.

On the contrary, for M (τ0 − ∆τ/2) > 0 there is no im-
passable region and the impact wave propagates infinitely.
Behind the front of the wave there arises a slightly inho-
mogeneous biomass distribution with irregularly situated
maxima and minima; the degree of inhomogeneity in this
pattern is (umax − umin)/u2 � 1.

It is widely believed that to take into account pattern
formation a diffusion–reaction model must contain at least
two components. This is quite true, but only for the case
when the system is homogeneous. Here a natural ques-
tion arises: to what extent can an inhomogeneity, always
taking place in real systems, change the dynamics of the
system? As we showed above, in a random medium a
kind of structure can be generated by the advancing im-
pact wave; this structure is described by a one-component
bistable model (1)–(3).

Let us now consider population dynamics in the ran-
dom medium in case when at the beginning of the process
the population is not localized but spread over the whole
area. We shall not discuss now such an initial distribution
in details which may be caused by quite specific reasons,
and consider only the schematic uniform initial condition
u(x, 0) = U0 = const. For the case of other parame-
ters being fixed, the issue depends on the value of U0.
If U0 is small the population will die out with time in the
whole region; if U0

∼= u2 (or greater) the slightly inho-
mogeneous structure described above will arise. But for
the values U0

∼= u1, there appears a prominent cell-like
distribution of the population with sharp inhomogeneities
(figure 4, thick line; here U0 = 0.3, D = 0.02, other para-
meters are the same as in figure 3). In this pattern, caused
by the medium inhomogeneity only, the “islets” with high
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ing case of “random” inhomogeneity seems more realistic.
The model is as follows: in a number of points the val-
ues of parameter τ (where τ = 1/α is the mean life-time
for the animals of a given sort) are generated as random
numbers which are distributed according to a certain distri-
bution function, e.g., with equal probability in the interval
(τ0 − ∆τ/2, τ0 + ∆τ/2). The values of τ obtained in this
way are then smoothly connected with cubic polynomials.
The distance between these points, i.e., the effective size of
the inhomogeneities, may be considered as the correlation
length ξcorr for this given medium.

The impact wave propagation in such a medium is in-
vestigated numerically. Note that the case ξcorr � ∆fr is
somewhat more complicated due to interference of indi-
vidual inhomogeneities located within the distance ∆fr; we
do not touch it in this paper. Otherwise, if ξcorr � ∆fr

the results may be treated on the base of that for a soli-
tary inhomogeneity. The type of impact wave dynam-
ics in this case strongly depends on the value of dis-
persion ∆τ . If ∆τ is sufficiently large, so that M (τ0 −
∆τ/2) < 0 (supposing M (τ0) > 0), it means the ex-
istence of impassable regions in the system and the im-
pact wave is blocked by supercritical inhomogeneities.
Figure 3 shows the situation when the wave, having
overcome one obstacle (curves 3–5), stops at the other
one with larger amplitude (in dimensionless units, see
above; for parameter values D = 0.5, ξcorr = 5,
τ0 = 1, ∆τ = 0.95, a = 5, b = 4, u1 = 0.25, u2 = 1.0).

Figure 4. Formation of a patchy distribution of a population in an in-
homogeneous environment. The profiles are calculated (in dimensionless
units) for equidistant moments t1 = 0 < t2 < t3 < t4 for parameters
U0 = 0.3, D = 0.02 and ∆τ = 0.95 (other values are the same as in

figure 3). Thick line shows the large-time asymptotics.

On the contrary, for M (τ0 − ∆τ/2) > 0 there is no im-
passable region and the impact wave propagates infinitely.
Behind the front of the wave there arises a slightly inho-
mogeneous biomass distribution with irregularly situated
maxima and minima; the degree of inhomogeneity in this
pattern is (umax − umin)/u2 � 1.

It is widely believed that to take into account pattern
formation a diffusion–reaction model must contain at least
two components. This is quite true, but only for the case
when the system is homogeneous. Here a natural ques-
tion arises: to what extent can an inhomogeneity, always
taking place in real systems, change the dynamics of the
system? As we showed above, in a random medium a
kind of structure can be generated by the advancing im-
pact wave; this structure is described by a one-component
bistable model (1)–(3).

Let us now consider population dynamics in the ran-
dom medium in case when at the beginning of the process
the population is not localized but spread over the whole
area. We shall not discuss now such an initial distribution
in details which may be caused by quite specific reasons,
and consider only the schematic uniform initial condition
u(x, 0) = U0 = const. For the case of other parame-
ters being fixed, the issue depends on the value of U0.
If U0 is small the population will die out with time in the
whole region; if U0

∼= u2 (or greater) the slightly inho-
mogeneous structure described above will arise. But for
the values U0

∼= u1, there appears a prominent cell-like
distribution of the population with sharp inhomogeneities
(figure 4, thick line; here U0 = 0.3, D = 0.02, other para-
meters are the same as in figure 3). In this pattern, caused
by the medium inhomogeneity only, the “islets” with high

Is there a possibility of wave blocking?
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Heterogeneous environment

Example I: Logistic growth

f (U,X ) = α(X )U
(

1− U
K (X )

)
.

No wave blocking is possible.

Example II: the strong Allee effect

f (U,X ) = α(X )U (β − U)

(
1− U

K (X )

)
.

Idea: wave blocking can occur if M(X ) < 0 in front of the
traveling front
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Figure 3. Impact wave profiles calculated at equidistant moments t1 =
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in a random environment (in dimensionless units; D = 0.5, ξcorr =
5, τ0 = 1, ∆τ = 0.75, a = 5, b = 4). Thick line shows the large-time
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spatial distribution is induced by inhomogeneity of the en-
vironment.

Concerning real ocean and marine ecosystems, the case
of a solitary inhomogeneity is rather particular. The follow-
ing case of “random” inhomogeneity seems more realistic.
The model is as follows: in a number of points the val-
ues of parameter τ (where τ = 1/α is the mean life-time
for the animals of a given sort) are generated as random
numbers which are distributed according to a certain distri-
bution function, e.g., with equal probability in the interval
(τ0 − ∆τ/2, τ0 + ∆τ/2). The values of τ obtained in this
way are then smoothly connected with cubic polynomials.
The distance between these points, i.e., the effective size of
the inhomogeneities, may be considered as the correlation
length ξcorr for this given medium.
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vestigated numerically. Note that the case ξcorr � ∆fr is
somewhat more complicated due to interference of indi-
vidual inhomogeneities located within the distance ∆fr; we
do not touch it in this paper. Otherwise, if ξcorr � ∆fr
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ics in this case strongly depends on the value of dis-
persion ∆τ . If ∆τ is sufficiently large, so that M (τ0 −
∆τ/2) < 0 (supposing M (τ0) > 0), it means the ex-
istence of impassable regions in the system and the im-
pact wave is blocked by supercritical inhomogeneities.
Figure 3 shows the situation when the wave, having
overcome one obstacle (curves 3–5), stops at the other
one with larger amplitude (in dimensionless units, see
above; for parameter values D = 0.5, ξcorr = 5,
τ0 = 1, ∆τ = 0.95, a = 5, b = 4, u1 = 0.25, u2 = 1.0).
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homogeneous environment. The profiles are calculated (in dimensionless
units) for equidistant moments t1 = 0 < t2 < t3 < t4 for parameters
U0 = 0.3, D = 0.02 and ∆τ = 0.95 (other values are the same as in
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On the contrary, for M (τ0 − ∆τ/2) > 0 there is no im-
passable region and the impact wave propagates infinitely.
Behind the front of the wave there arises a slightly inho-
mogeneous biomass distribution with irregularly situated
maxima and minima; the degree of inhomogeneity in this
pattern is (umax − umin)/u2 � 1.

It is widely believed that to take into account pattern
formation a diffusion–reaction model must contain at least
two components. This is quite true, but only for the case
when the system is homogeneous. Here a natural ques-
tion arises: to what extent can an inhomogeneity, always
taking place in real systems, change the dynamics of the
system? As we showed above, in a random medium a
kind of structure can be generated by the advancing im-
pact wave; this structure is described by a one-component
bistable model (1)–(3).

Let us now consider population dynamics in the ran-
dom medium in case when at the beginning of the process
the population is not localized but spread over the whole
area. We shall not discuss now such an initial distribution
in details which may be caused by quite specific reasons,
and consider only the schematic uniform initial condition
u(x, 0) = U0 = const. For the case of other parame-
ters being fixed, the issue depends on the value of U0.
If U0 is small the population will die out with time in the
whole region; if U0

∼= u2 (or greater) the slightly inho-
mogeneous structure described above will arise. But for
the values U0

∼= u1, there appears a prominent cell-like
distribution of the population with sharp inhomogeneities
(figure 4, thick line; here U0 = 0.3, D = 0.02, other para-
meters are the same as in figure 3). In this pattern, caused
by the medium inhomogeneity only, the “islets” with high
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A single-hump heterogeneity

Consider K (X ) = const and α(X ) = α0[1 + ψ(X )],

f (U,X ) = −α0[1 + ψ(X )]U + α2U2 − α3U3 ,

where ψ(X ) is positive only in a compact domain:

ψ(X ) > 0 for X1 < X < X2 ,

ψ(X ) ≡ 0 for X < X1 or X > X2.

Heterogeneity leads to a backward shift ∆ in the front position.

Theorem. Consider ε = maxψ(X ) � 1. Then ∆ = B
2M + o(ε)

where

M =

∫ K

0
f (U)dU and B =

∫ X2

X1

ψ(X )dX .
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Figure 1. Impact wave profiles calculated at equidistant moments t1 =
0 < t2 < · · · < t7 in a medium with an undercritical solitary inhomo-
geneity (in dimensionless units, see in the text; D = 1, α0 = 1, a = 5,
b = 4, x1 = 15, d = 2.0, ψmax = 0.5). Thick line shows the large-time

asymptotics.

Figure 2. A map in the plane “magnitude–amplitude” for a solitary in-
homogeneity (in dimensionless units, parameters are the same as in fig-
ure 1): for region 1 the impact wave propagates indefinitely, for region 2
the wave is blocked. Thick line is for numerical results, dashed line is for
the small-magnitude asymptotics (12), dashed-and-dotted line is for the

large-magnitude asymptotics (9).

ψmax = ψcr(d). Figure 2 shows a map in the (ψmax, d)-
plane obtained by this “shooting” method (the values of
parameters are the same as in figure 1). The curve ψcr(d)
(thick line) divides the plane into two regions. For parame-
ters from region 1 (that is, for relatively small magnitude
or amplitude) the wave overcomes the inhomogeneity, for

parameters from region 2 the wave stops. It is important to
note that, as has been found in our numerical experiments,
some variations of the local multiplication rates, i.e., of
function f (u), lead only to changes in the critical curve
position in the (ψmax, d)-plane but practically do not alter
its form.

So, to predict wave blocking, one has to know the re-
lation between the critical values of ψmax and d. For large
values of d, equation (9) can be used. Another approxi-
mate analytical formula may be derived under the assump-
tion that the magnitude of the inhomogeneity is sufficiently
small. Appropriate asymptotical analysis [15] combined
with standard dimension analysis shows that for a bistable
system with an arbitrary nonlinearity f (u) the critical am-
plitude depends on the inverse of the inhomogeneity mag-
nitude, i.e.,

ψcr = k(D/α0)1/2d−1. (11)

For every particular system the numerical coefficient k
can be determined by comparison with experimental or
numerical data. However, numerical results shows that
the coefficient k strongly depends on both functions ψ(x)
and f (u). This is not surprising, because equation (11) does
not contain any information about function f (u).

Equation (11) is not of much value until the coeffi-
cient k is specified via problem parameters. To obtain an
exact formula seems quite a difficult problem. Recently
Petrovskii [15] proposed the following semi-empirical ex-
pression for the case of a step-like inhomogeneity: k =
k1M/(α0u

2
2). Then for the critical amplitude we obtain

ψcr = k1
(
MD1/2α

−3/2
0 u−2

2

)
d−1. (12)

Here the numerical coefficient k1, still not being strictly
constant, shows only a slight dependence on the problem
parameters. Having compared equation (12) with numerical
results for various kinds of function f (u), we obtained that
the value of k1 is about 7–8.

The critical relation ψcr(d) calculated according to (12) is
shown in figure 2, dashed curve (for k1 = 7.37). Evidently,
expression (12) is in very good agreement with numerical
results (solid curve) up to d/∆fr

∼= 2. For d/∆fr > 10 the
function ψcr(d) is nearly reaching its large-magnitude as-
ymptotics, ψcr = ψ∗ (see equation (9)) – dashed-and-dotted
line in figure 2. Thus, the simple explicit equations (12)
and (9) provide a very good approximation of the critical
relation ψcr(d) with the only free parameter k1.

4. Pattern formation in inhomogeneous environment

It is well known that the plankton spatial distribution in
a natural environment is highly inhomogeneous. Recently
this phenomenon of “patchiness” has been under intensive
study and several possible scenarios of pattern formation
are proposed (e.g., see [9]). In this paper we consider an-
other one in which a strongly inhomogeneous population

What if the hump is not small, i.e. ε ∼ 1 or larger?



The stop-go diagram:

130 S.V. Petrovskii / Modeling impact waves

Figure 1. Impact wave profiles calculated at equidistant moments t1 =
0 < t2 < · · · < t7 in a medium with an undercritical solitary inhomo-
geneity (in dimensionless units, see in the text; D = 1, α0 = 1, a = 5,
b = 4, x1 = 15, d = 2.0, ψmax = 0.5). Thick line shows the large-time

asymptotics.

Figure 2. A map in the plane “magnitude–amplitude” for a solitary in-
homogeneity (in dimensionless units, parameters are the same as in fig-
ure 1): for region 1 the impact wave propagates indefinitely, for region 2
the wave is blocked. Thick line is for numerical results, dashed line is for
the small-magnitude asymptotics (12), dashed-and-dotted line is for the

large-magnitude asymptotics (9).

ψmax = ψcr(d). Figure 2 shows a map in the (ψmax, d)-
plane obtained by this “shooting” method (the values of
parameters are the same as in figure 1). The curve ψcr(d)
(thick line) divides the plane into two regions. For parame-
ters from region 1 (that is, for relatively small magnitude
or amplitude) the wave overcomes the inhomogeneity, for

parameters from region 2 the wave stops. It is important to
note that, as has been found in our numerical experiments,
some variations of the local multiplication rates, i.e., of
function f (u), lead only to changes in the critical curve
position in the (ψmax, d)-plane but practically do not alter
its form.

So, to predict wave blocking, one has to know the re-
lation between the critical values of ψmax and d. For large
values of d, equation (9) can be used. Another approxi-
mate analytical formula may be derived under the assump-
tion that the magnitude of the inhomogeneity is sufficiently
small. Appropriate asymptotical analysis [15] combined
with standard dimension analysis shows that for a bistable
system with an arbitrary nonlinearity f (u) the critical am-
plitude depends on the inverse of the inhomogeneity mag-
nitude, i.e.,

ψcr = k(D/α0)1/2d−1. (11)

For every particular system the numerical coefficient k
can be determined by comparison with experimental or
numerical data. However, numerical results shows that
the coefficient k strongly depends on both functions ψ(x)
and f (u). This is not surprising, because equation (11) does
not contain any information about function f (u).

Equation (11) is not of much value until the coeffi-
cient k is specified via problem parameters. To obtain an
exact formula seems quite a difficult problem. Recently
Petrovskii [15] proposed the following semi-empirical ex-
pression for the case of a step-like inhomogeneity: k =
k1M/(α0u

2
2). Then for the critical amplitude we obtain

ψcr = k1
(
MD1/2α

−3/2
0 u−2

2

)
d−1. (12)

Here the numerical coefficient k1, still not being strictly
constant, shows only a slight dependence on the problem
parameters. Having compared equation (12) with numerical
results for various kinds of function f (u), we obtained that
the value of k1 is about 7–8.

The critical relation ψcr(d) calculated according to (12) is
shown in figure 2, dashed curve (for k1 = 7.37). Evidently,
expression (12) is in very good agreement with numerical
results (solid curve) up to d/∆fr

∼= 2. For d/∆fr > 10 the
function ψcr(d) is nearly reaching its large-magnitude as-
ymptotics, ψcr = ψ∗ (see equation (9)) – dashed-and-dotted
line in figure 2. Thus, the simple explicit equations (12)
and (9) provide a very good approximation of the critical
relation ψcr(d) with the only free parameter k1.

4. Pattern formation in inhomogeneous environment

It is well known that the plankton spatial distribution in
a natural environment is highly inhomogeneous. Recently
this phenomenon of “patchiness” has been under intensive
study and several possible scenarios of pattern formation
are proposed (e.g., see [9]). In this paper we consider an-
other one in which a strongly inhomogeneous population

Domain 1 for wave propagation, Domain 2 for wave blocking
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Chapter IV

PDE models of biological invasion:

Multi-species system



Impact of other species

• This is a very big issue.

• Most of the complexity associated with biological invasions
results from the interspecific interactions.

(Even in a homogeneous environment: pattern formation!)

• Being motivated by the problem of biological control, we
will mostly focus on two-species systems such as
predator-prey and host-pathogen.

• Biological control is a strategy in invasive species
management when natural factors are used in order to
slow down or to block the species spread and/or to lead to
its eradication
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Factors that may affect the pattern of spread

• Heterogeneity of environment

• Human-assisted dispersal (aka “stratified diffusion”)

• Predation?

• Impact of pathogens?

• . . . ?
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Mathematical model

A predator-prey / host-pathogen system:

∂U(R,T )

∂T
= D1∇2U(R,T ) + f (U)U − r(U)V ,

∂V (R,T )

∂T
= D2∇2V (R,T ) + κr(U)V −MV



Mathematical model

A predator-prey / host-pathogen system:

∂U(R,T )

∂T
= D1∇2U(R,T ) + f (U)U − r(U)V ,

∂V (R,T )

∂T
= D2∇2V (R,T ) + κr(U)V −MV

We consider

• Allee effect for prey/host: f (U) = α(U − U0)(K − U)

• r(U) = η U
H+U in case of predation

• r(U) = ηU in case of pathogens



Mathematical model (contd.)

In dimensionless variables:

∂u(r, t)
∂t

= ∇2u(r, t) + γu(u − β)(1− u)− uv
1 + Λu

,

∂v(r, t)
∂t

= ε∇2v(r, t) +
uv

1 + Λu
−mv .

For Λ = 0, these equations coincide with an SI model of a
host-pathogen system.



1D case

Analytical results

The generic pattern of species spread is considered to be the
traveling front

Question: can predation block or reverse the front?

Yes is the answer.

ε� 1: Owen & Lewis (2001), singular perturbation analysis.

ε = 1: Petrovskii et al. (2005), exact solution.



1D case (contd.)

However, the above analytical results were obtained in terms of
traveling waves. This is a strong assumption.

Can the pattern of spread be different from the traveling front?

Simulations. Consider the following initial conditions:

u(x ,0) = u0 for −∆u < x < ∆u , otherwise u(x ,0) = 0 ,

v(x ,0) = v0 for −∆v < x < ∆v , otherwise v(x ,0) = 0 ,

where u0, v0 are the initial population densities,
∆u and ∆v give the radius of the initially invaded domain.



1D case (contd.)

42 S.V. Petrovskii, H. Malchow / Nonlinear Analysis: Real World Applications 1 (2000) 37–51

Fig. 2. The density of the predators vs. coordinate calculated for equidistant time moments with �t = 160
for k = 2:0; p= 0:4; h= 0:6. The rectangle at the lower left corner shows the initial distribution, the arrow
indicates the direction of the population wave propagation.

4. Results of numerical experiments

The problem is solved numerically for two di�erent cases. First (case A), Eqs. (6)
and (7) are provided with initial conditions which are localized (�nite) for the predator
population and are homogeneous for the prey:

v(x; 0) = p2 if |x|¡�2; v(x; 0) = 0 if |x|¿�2; (12)

u(x; 0) ≡ 1 ∀x; (13)

where p2 and �2 are dimensionless constants. From biological point of view, these
conditions may correspond to the invasion of zooplankton species into an area already
inhabited by phytoplankton at the level of the carrying capacity. Typical results of
computer experiments are presented in Figs. 2–5. Since the problem is symmetrical
with respect to the origin only half of the domain is shown. We want to mention that,
for a �xed form of the initial conditions (12)–(13) or (14)–(15) below the system
shows no signi�cant dependence on the values of width and amplitude of the initial
“patch”.
Eqs. (6) and (7) with the initial conditions (12)–(13) or (14)–(15) have been solved

by the �nite-di�erence method. The values of the mesh steps in space, �x, and time,
�t, have been chosen su�ciently small to provide numerical stability and the required
approximation. To test the in
uence of the discontinuity in the initial distribution of
the species, we have also considered another, “smoothed” form of the initial conditions



1D case (contd.)
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1D case (contd.)
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1D case (contd.)
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1D case (contd.)
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Figure 1
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2D case, simulations

The initial conditions:

u(x , y ,0) = u0 for x11 < x < x12 , y11 < y < y12 ,

u(x , y ,0) = 0 otherwise,

v(x , y ,0) = v0 for x21 < x < x22 , y21 < y < y22 ,

v(x , y ,0) = 0 otherwise.
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2D case (contd.)
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2D case (contd.)
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2D case (contd.)
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2D case (contd.)
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2D case (contd.)
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Figure 6.3: Patchy invasion in prey predator model. Snapshots show prey density at t = 100,
t = 200, t = 350, t = 450, t = 600 and t = 750, with the parameter set: γ = 5 and m = 0.347.

All other parameters were kept constant throughout simulations: λ = 0.1 and b = 0.2. Regimes

observed in the simulations can be classified into five categories: extinction, transitional (extinction-

70
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Summary of simulation results
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Without space:

Predation/infection strength increases from left to right:
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Limit cycle disappears through a heteroclinic bifurcation

Patchy spread occur when the nonspatial system is not viable!

(Malchow, Petrovskii & Venturino, 2008)



Theory against data: gypsy moth in the USA

1977 1981

The red spots show heavily infested areas
(from the US Forest Service, www.fs.fed.us/ne/morgantown)

The calculated rate of spread is between 0.36 and 3.3 km/year
against the observed rate between 2 and 10 km/year

(Jankovic & Petrovskii, 2013)



The end of Part 1




